Tangents PA and PB are drawn from an external point P to two concentric circles with cente O and radii 8cm and 5 cm respectively, as shown in fig. If AP = 15 cm, then find the length of BP.
Attachments:
Answers
Answered by
13
HELLO DEAR,
given that:-
AP = 15cm
outer circle of radius =AO=8CM
and inner circle radius=OB=5CM
IN ∆ AOP ,<A = 90°
OP²=OA²+AP²--------------(1)
IN∆OPB ,<B=90°
OP²=OB²+BP²-----------(2)
FROM--(1) AND--(2)
we get,
OB²+BP²=OA²+AP²
now put the values we get
(5)² +( BP)² =( 8)²+(15)²
BP² = 64+225-25
BP²= 64+200
BP²=264
BP =16.24 (approx).
I HOPE ITS HELP YOU DEAR,
THANKS
given that:-
AP = 15cm
outer circle of radius =AO=8CM
and inner circle radius=OB=5CM
IN ∆ AOP ,<A = 90°
OP²=OA²+AP²--------------(1)
IN∆OPB ,<B=90°
OP²=OB²+BP²-----------(2)
FROM--(1) AND--(2)
we get,
OB²+BP²=OA²+AP²
now put the values we get
(5)² +( BP)² =( 8)²+(15)²
BP² = 64+225-25
BP²= 64+200
BP²=264
BP =16.24 (approx).
I HOPE ITS HELP YOU DEAR,
THANKS
toxicantthakur:
u do not have need to type
Similar questions