Math, asked by nitinsaini4911, 5 months ago

tanho
10. Express cosh^7theta? in terms of hyperbolic cosines of multiples of theta​

Answers

Answered by Mithalesh1602398
0

Answer:

$\cos ^7 \theta=\frac{1}{64}[\cos 7 \theta+7 \cos 5 \theta+21 \cos 3 \theta+35 \cos \theta]$

Step-by-step explanation:

The trigonometric or circular functions have analogues in the hyperbolic functions. The hyperbolic function may be found in Laplace's equations in cartesian coordinates, solutions to linear differential equations, and calculations of distance and angles in hyperbolic geometry. The hyperbolic function, often known as the hyperbolic angle, typically occurs in the real argument. The fundamental hyperbolic operations are:

Overextended sine (sinh)

distorted sine (cosh)

hyperbolic digression (tanh)

$\begin{aligned} & \text { Let, } x=\cos \theta+i \sin \theta \quad \frac{1}{x}=\cos \theta-i \sin \theta \\ & \therefore x^n=(\cos \theta+i \sin \theta)^n=\cos n \theta+i \sin \theta \\ & \text { Also } \frac{1}{x^n}=(\cos \theta-i \sin \theta)^n=\cos n \theta-i \sin n \theta \\ & \{\because \text { DeMoivre s Theorem }\}\end{aligned}$

$x^n+\frac{1}{x^n}=2 \cos n \theta$

$\cos ^7 \theta=(\cos \theta)^7=\left[\frac{1}{2}\left(x+\frac{1}{x}\right)\right]^7=\frac{1}{2^7}\left(x+\frac{1}{x}\right)^7 \quad$ from (i)

$\begin{aligned} & (\cos \theta)^7= \\ & \frac{1}{2^7}\left[x^7+7 x^6 \cdot \frac{1}{x}+21 x^5 \cdot \frac{1}{x^2}+35 x^4 \cdot \frac{1}{x^3}+35 x^3 \cdot \frac{1}{x^4}+21 x^2 \cdot \frac{1}{x^5}+7 x \cdot \frac{1}{x^6}+\frac{1}{x^7}\right] \\ & \ldots \text { Expanding binomially }\end{aligned}$

$\begin{aligned} & =\frac{1}{128}\left[x^7+7\left(x^5+\frac{1}{x^5}\right)+21\left(x^3+\frac{1}{x^3}\right)+35\left(x+\frac{1}{x}\right)+\frac{1}{x^7}\right] \\ & =\frac{1}{128}[2 \cos 7 \theta+7(2 \cos 5 \theta)+21(2 \cos 3 \theta)+35(2 \cos \theta)] \quad \text { from }(i) \\ & \therefore \cos ^7 \theta=\frac{1}{64}[\cos 7 \theta+7 \cos 5 \theta+21 \cos 3 \theta+35 \cos \theta]\end{aligned}$

Learn more about similar questions visit:

https://brainly.in/question/12442757?referrer=searchResults

https://brainly.in/question/29772699?referrer=searchResults

#SPJ1

Similar questions