Math, asked by LipikaGogoi, 7 months ago

tant 3-sei (-2) is equal to
.
 tan {?}^{ - 1}  \sqrt{3}  - sec {?}^{ - 1} ( - 2) \: is \: equal \: to

Answers

Answered by Anonymous
17

AnswEr :

Given Expression,

 \sf tan {}^{ - 1}( \sqrt{3} )  - sec {}^{ - 1} ( - 2)

We know that,

 \sf  { sec}^{ - 1} ( - x) = \pi -  {sec}^{ - 1} (x)

Therefore,

 \implies \:  \sf tan {}^{ - 1}( \sqrt{3}) + \pi   \:  - sec {}^{ - 1} (2)

We know that,

  • tan(π/3) = √3
  • sec(π/3) = 2

Thus,

 \implies \:  \sf tan {}^{ - 1} \big(tan( \dfrac{\pi}{3} ) \big) + \pi   \:  - sec {}^{ - 1}  \big( sec( \dfrac{\pi}{3} )  \big) \\  \\  \implies \sf \pi +  \dfrac{\pi}{3}  -  \dfrac{\pi}{3}  \\  \\  \implies \sf \: \pi

Henceforth,

  \boxed{ \boxed{\sf tan {}^{ - 1}( \sqrt{3} )  - sec {}^{ - 1} ( - 2) = \pi}}

Answered by Anonymous
4

Step-by-step explanation:

AnswEr :

Given Expression,

\sf tan {}^{ - 1}( \sqrt{3} ) - sec {}^{ - 1} ( - 2)tan

−1

(

3

)−sec

−1

(−2)

We know that,

\sf { sec}^{ - 1} ( - x) = \pi - {sec}^{ - 1} (x)sec

−1

(−x)=π−sec

−1

(x)

Therefore,

\implies \: \sf tan {}^{ - 1}( \sqrt{3}) + \pi \: - sec {}^{ - 1} (2)⟹tan

−1

(

3

)+π−sec

−1

(2)

We know that,

tan(π/3) = √3

sec(π/3) = 2

Thus,

\begin{gathered}\implies \: \sf tan {}^{ - 1} \big(tan( \dfrac{\pi}{3} ) \big) + \pi \: - sec {}^{ - 1} \big( sec( \dfrac{\pi}{3} ) \big) \\ \\ \implies \sf \pi + \dfrac{\pi}{3} - \dfrac{\pi}{3} \\ \\ \implies \sf \: \pi\end{gathered}

⟹tan

−1

(tan(

3

π

))+π−sec

−1

(sec(

3

π

))

⟹π+

3

π

3

π

⟹π

Henceforth,

\boxed{ \boxed{\sf tan {}^{ - 1}( \sqrt{3} ) - sec {}^{ - 1} ( - 2) = \pi}}

tan

−1

(

3

)−sec

−1

(−2)=π

Similar questions