tant 3-sei (-2) is equal to
.
Answers
AnswEr :
Given Expression,
We know that,
Therefore,
We know that,
- tan(π/3) = √3
- sec(π/3) = 2
Thus,
Henceforth,
Step-by-step explanation:
AnswEr :
Given Expression,
\sf tan {}^{ - 1}( \sqrt{3} ) - sec {}^{ - 1} ( - 2)tan
−1
(
3
)−sec
−1
(−2)
We know that,
\sf { sec}^{ - 1} ( - x) = \pi - {sec}^{ - 1} (x)sec
−1
(−x)=π−sec
−1
(x)
Therefore,
\implies \: \sf tan {}^{ - 1}( \sqrt{3}) + \pi \: - sec {}^{ - 1} (2)⟹tan
−1
(
3
)+π−sec
−1
(2)
We know that,
tan(π/3) = √3
sec(π/3) = 2
Thus,
\begin{gathered}\implies \: \sf tan {}^{ - 1} \big(tan( \dfrac{\pi}{3} ) \big) + \pi \: - sec {}^{ - 1} \big( sec( \dfrac{\pi}{3} ) \big) \\ \\ \implies \sf \pi + \dfrac{\pi}{3} - \dfrac{\pi}{3} \\ \\ \implies \sf \: \pi\end{gathered}
⟹tan
−1
(tan(
3
π
))+π−sec
−1
(sec(
3
π
))
⟹π+
3
π
−
3
π
⟹π
Henceforth,
\boxed{ \boxed{\sf tan {}^{ - 1}( \sqrt{3} ) - sec {}^{ - 1} ( - 2) = \pi}}
tan
−1
(
3
)−sec
−1
(−2)=π