Math, asked by ombuddy, 10 months ago

tantheata+cottheta=sectheta×cosectheta​

Answers

Answered by nishant88y
0

Step-by-step explanation:

let x be theta,

LHS = tan(x) + cot(x) = sin(x)/cos(x) + cos(x)/ sin(x)

= ( (sin(x) )^2 + ( cos(x) )^2) / (sin(X)cos(X))

= 1 / sin(x) cos(x)

= cosec(x). sec(x) = RHS

Answered by ksonakshi70
0

Answer:

 \tan( \alpha )  +  \cot( \alpha )  =  \sec( \alpha )  \times  \cosec ( \alpha )  \\  \frac{ \sin( \alpha ) }{ \cos( \alpha ) }  +   \frac{ \cos( \alpha ) }{ \sin( \alpha ) }  \\  =  \frac{ { \sin( \alpha ) }^{2} +  { \cos( \alpha ) }^{2}  }{ \sin( \alpha ) \cos( \alpha )  }  \\  =  \frac{1}{ \sin( \alpha ) \cos( \alpha )  }  \\  =  \sec( \alpha )  \cosec( \alpha )

Similar questions