tantheeta/1-cottheta+cottheeta/1-tantheeta prove that =1+tantheeta+cottheeta
Answers
Answered by
1
As the Question is,
tanФ/1-cotФ + cotФ/1-tanФ = 1 + tanФ + cotФ
Taking LHS
= tanФ/1-cotФ + cotФ/1-tanФ
= tanФ/1-cotФ + cotФ ÷ 1-1/cotФ
(tanФ = 1/cotФ)
= tanФ/1-cotФ + cot²Ф/cotФ-1
(Taking LCM and transposing cotФ to numerator)
= tanФ/1-cotФ - cot²Ф/1-cotФ
(we make - cot²Ф to bring same denominator)
= 1/cotФ - cot²Ф ÷ 1 - cotФ
(tanФ = 1/cotФ)
= 1 - cot³Ф/cotФ(1-cotФ)
(Taking LCM and bringing cotФ to denominator)
= (1-cotФ)(1+cot²Ф+cotФ)/cotФ(1-cotФ)
(From formula a³ - b³ = (a-b)(a²+b²+ab) )
= 1/cotФ + cot²/cotФ + cotФ/cotФ
(Cancelling (1-cotФ) on both numerator and denominator, Also take cotФ separately in order to simplify easily)
= tanФ + cotФ + 1
= 1 + tanФ + cotФ = RHS
HENCE PROVED
tanФ/1-cotФ + cotФ/1-tanФ = 1 + tanФ + cotФ
Taking LHS
= tanФ/1-cotФ + cotФ/1-tanФ
= tanФ/1-cotФ + cotФ ÷ 1-1/cotФ
(tanФ = 1/cotФ)
= tanФ/1-cotФ + cot²Ф/cotФ-1
(Taking LCM and transposing cotФ to numerator)
= tanФ/1-cotФ - cot²Ф/1-cotФ
(we make - cot²Ф to bring same denominator)
= 1/cotФ - cot²Ф ÷ 1 - cotФ
(tanФ = 1/cotФ)
= 1 - cot³Ф/cotФ(1-cotФ)
(Taking LCM and bringing cotФ to denominator)
= (1-cotФ)(1+cot²Ф+cotФ)/cotФ(1-cotФ)
(From formula a³ - b³ = (a-b)(a²+b²+ab) )
= 1/cotФ + cot²/cotФ + cotФ/cotФ
(Cancelling (1-cotФ) on both numerator and denominator, Also take cotФ separately in order to simplify easily)
= tanФ + cotФ + 1
= 1 + tanФ + cotФ = RHS
HENCE PROVED
☺Hope this Helps☺
nitthesh7:
if u find it as most helpful pls mark it as brainliest
Answered by
1
s ur question is proved
Similar questions
English,
8 months ago
Math,
8 months ago
Geography,
8 months ago
CBSE BOARD X,
1 year ago
Economy,
1 year ago
English,
1 year ago
Social Sciences,
1 year ago