Math, asked by brijeshpal7866786, 4 months ago

tantheta =8/15
find sintheta and cos theta


-​

Answers

Answered by Yuseong
6

Answer :

\sf\red {\longrightarrow \:  \sin \theta = \dfrac{8}{17} }

\sf \red {\longrightarrow \:  \cos \theta = \dfrac{15}{17} }

Given :

 \odot \:   \sf{ \tan \theta  = \dfrac{8}{15}  }

To find :

 \odot \:   \sf{ \sin \theta  \: and \: \cos \theta }

Calculation :

As we know that,

\sf {\longrightarrow \:  \tan \theta = \dfrac{Perpendicular}{Base} }

So, according to the question :

\sf {\longrightarrow \:  \tan \theta = \dfrac{P}{B}=   \dfrac{8}{15}}

  • Perpendicular = 8
  • Base = 15

Also, we know that :

\sf {\longrightarrow \:  \sin \theta = \dfrac{Perpendicular}{Hypotenuse} }

\sf {\longrightarrow \:  \cos \theta = \dfrac{Base}{Hypotenuse} }

By pythagoras property, we'll calculate the hypotenuse :

We know that,

→ H² = B² + P²

→ H² = (15)² + (8)²

→ H² = 225 + 64

→ H² = 289

→ H = √289

→ H = 17

Henceforth,

\sf {\longrightarrow \:  \sin \theta = \dfrac{Perpendicular}{Hypotenuse} }

\sf\red {\longrightarrow \:  \sin \theta = \dfrac{8}{17} }

\sf {\longrightarrow \:  \cos \theta = \dfrac{Base}{Hypotenuse} }

\sf \red{\longrightarrow \:  \cos \theta = \dfrac{15}{17} }

Similar questions