Math, asked by thanee, 1 year ago

tantheta+sectheta-1/tantheta-sectheta+1=(1+sintheta)/costheta

Answers

Answered by MaheswariS
1

Answer:

\frac{tan\theta+sec\theta-1}{tan\theta-sec\theta+1}

Using

\boxed{\bf\:sec^2A-tan^2A=1}

=\frac{tan\theta+sec\theta-(sec^2\theta-tan^2\theta)}{tan\theta-sec\theta+1}

Using

\boxed{\bf\:a^2-b^2=(a-b)(a+b)}

=\frac{tan\theta+sec\theta-(sec\theta-tan\theta)(sec\theta+tan\theta)}{tan\theta-sec\theta+1}

=\frac{(sec\theta+tan\theta)(1-(sec\theta-tan\theta))}{tan\theta-sec\theta+1}

Rearranging terms, we get

=\frac{(sec\theta+tan\theta)(tan\theta-sec\theta+1)}{tan\theta-sec\theta+1}

=sec\theta+tan\theta

=\frac{1}{cos\theta}+\frac{sin\theta}{cos\theta}

=\frac{1+sin\theta}{cos\theta}

\implies\boxed{\frac{tan\theta+sec\theta-1}{tan\theta-sec\theta+1}=\frac{1+sin\theta}{cos\theta}}

Similar questions