Tantheta +tan2theta +tn3theta =0 general solution
Answers
Answered by
0
Answer:
tanθ+tan2θ+tan(θ+2θ)=0
(tanθ+tan2θ)+
1−tanθtan2θ
tanθ+tan2θ
=0
(tanθ+tan2θ)(1−tanθtan2θ+1)=0
tan2θ+tanθ=0
∴tan2θ=−tanθ=tan(−θ)
∴2θ=nπ−θ or 3θ=nπ
∴θ=nπ/3
From 2nd factor
tanθtan2θ=2 or tanθ⋅
1−tan
2
θ
2tanθ
=2
tan
2
θ=1−tan
2
θ or 2tan
2
θ=1
∴tanθ=±
(2)
1
=±tanα where tanα=
(2)
1
∴θ=nπ±α where α=tan
−1
(2)
1
0<α<π/2
Step-by-step explanation:
hope its help u..
plz mark my answer as a brainliest answer..
Similar questions