Tanx/2=tany/3=tanz/5 and x+y+z=π then the value of tan^2x+tan^2y+tan^2z is
Answers
Answered by
8
It has given that,
tanx/2 = tany/3 = tanz/5 and x + y + z = π
To find : The value of tan²x + tan²y + tan²z
solution : here, x + y + z = π
⇒tan(x + y + z) = tanπ
⇒{tanx + tany + tanz - tanx tany tanz}/{1 - tanx tany - tany tanz - tanz tanx } = 0
⇒tanx + tany + tanz = tanx tany tanz......(1)
now tanx/2 = tany/3 = tanz/5 = k (let)
⇒tanx = 2k , tany = 3k , tanz = 5k
putting above terms in equation (1) we get,
2k + 3k + 5k = 2k . 3k . 5k
⇒10k = 30k³
⇒k² = 1/3
⇒k = 1/√3
now, tanx = 2/√3, tany = 3/√3 and tanz = 5/√3
so, tan²x + tan²y + tan²z
= (2/√3)² + (3/√3)² + (5/√3)²
= (2² + 3² + 5²)/3
= (4 + 9 + 25)/3
= 38/3
Therefore the value of tan²x + tan²y + tan²z = 38/3
Similar questions
Physics,
5 months ago
English,
10 months ago
Environmental Sciences,
10 months ago
English,
1 year ago
English,
1 year ago