Math, asked by ashwashghosh, 9 days ago

tanX=b/a then solve equation of a²cosec2x+b²sec2x​

Answers

Answered by senboni123456
2

Answer:

Step-by-step explanation:

We have,

\tt{tan(x)=\dfrac{b}{a}}

Now,

\sf{a^2\,cosec(2x)+b^2\,sec(2x)}

\sf{=\dfrac{a^2}{sin(2x)}+\dfrac{b^2}{cos(2x)}}

\sf{=\dfrac{a^2}{\dfrac{2\,tan(x)}{1+tan^2(x)}}+\dfrac{b^2}{\dfrac{1-tan^2(x)}{1+tan^2(x)}}}

\sf{=\dfrac{a^2(1+tan^2(x))}{2\,tan(x)}+\dfrac{b^2(1+tan^2(x))}{1-tan^2(x)}}

Now, put the value of tan(x)

So,

\sf{=\dfrac{a^2\bigg\{1+\bigg(\dfrac{b}{a}\bigg)^2\bigg\}}{2\,\bigg(\dfrac{b}{a}\bigg)}+\dfrac{b^2\bigg\{1+\bigg(\dfrac{b}{a}\bigg)^2\bigg\}}{1-\bigg(\dfrac{b}{a}\bigg)^2}}

\sf{=\dfrac{a^2\bigg\{\dfrac{a^2+b^2}{a^2}\bigg\}}{\dfrac{2b}{a}}+\dfrac{b^2\bigg\{\dfrac{a^2+b^2}{a^2}\bigg\}}{\dfrac{a^2-b^2}{a^2}}}

\sf{=\dfrac{a^2+b^2}{\dfrac{2b}{a}}+\dfrac{b^2(a^2+b^2)}{a^2-b^2}}

\sf{=\dfrac{a(a^2+b^2)}{2b}+\dfrac{b^2(a^2+b^2)}{a^2-b^2}}

\sf{=(a^2+b^2)\bigg\{\dfrac{a}{2b}+\dfrac{b^2}{a^2-b^2}\bigg\}}

\sf{=(a^2+b^2)\bigg\{\dfrac{a(a^2-b^2)+2b^3}{2b(a^2-b^2)}\bigg\}}

\sf{=\dfrac{(a^2+b^2)(a^3-ab^2+2b^3)}{2b(a^2-b^2)}}

Similar questions