tanx-cotx=cosecx (solve)
Answers
Answered by
2
Given : Tanx - Cotx = Cosecx
To Find : Value of x
Solution:
Tanx - Cotx = Cosecx
= Sinx/Cosx - cosx/sinx = 1/Sinx
=> (sin²x - cos²x) = sinxcosx/sinx
=> sin²x - cos²x = cosx
=> 1 - cos²x - cos²x = cosx
=> 2cos²x + cosx - 1 = 0
=> 2cos²x+ 2cosx - cosx - 1 = 0
=> 2cosx(cosx + 1) - 1(cosx + 1) = 0
=> (2cos x - 1)(cosx + 1) = 0
=> cosx = 1/2 cosx = - 1
x = 60° or x = 180°
but cotx not defined at 180°
Hence x = 60°
identity can be :
Tanx+ Cotx = Cosecx.Secx
=> Sinx/Cosx + cosx/sinx = 1/SinxCosx
=> sin²x - cos²x = 1
=> 1 = 1
Learn more:
1/secx-tanx -1/cos = 1/cosx - 1/secx+tanx
brainly.in/question/8160834
cosX-4sinx=1 then sinx+4cosx[tex] cos(x) - Brainly.in
brainly.in/question/8892362
Similar questions