tanx-cotx / sinx.cosx solve this problem
Answers
Answered by
1
tanx-cotx/sinxcosx=
(sinx/cosx-cosx/sinx)/sinxcosx=
{(sin²x-cos²x)/sinxcosx}/sinxcosx=
(sin²x-cos²x)/sin²xcos²x=
1/cos²x-1/sin²x=
sec²x-cosec²x=
1+tan²x-(1+cot²x) =
tan²x-cot²x (Proved)
(sinx/cosx-cosx/sinx)/sinxcosx=
{(sin²x-cos²x)/sinxcosx}/sinxcosx=
(sin²x-cos²x)/sin²xcos²x=
1/cos²x-1/sin²x=
sec²x-cosec²x=
1+tan²x-(1+cot²x) =
tan²x-cot²x (Proved)
Dsnyder:
pls mark brainliest
Similar questions