Math, asked by drrafi2192005, 3 months ago

tanx = n/ n+1 ; tan y=1 / 2n+1 find tan (x+y) ​

Answers

Answered by vinay140
2

Answers :

Answer is in attached file.

Attachments:
Answered by PharohX
9

Step-by-step explanation:

  \large{ \green{ \rm \: GIVEN : -  }}

 \sf \:  \tan(x)  =  \frac{n}{n + 1}  \\

 \sf  \:  \tan( y)  =  \frac{1}{2n + 1}  \\

  \large{ \green{ \rm \: TO \:  \:  FIND : -  }}

 \sf \:  \tan(x + y)

  \large{ \green{ \rm \: SOLUTION : -  }}

 \sf \: Using  \:  \: the  \:  \: formula

  \sf \: \tan(x + y)  =  \frac{ \tan(x)  +  \tan(y) }{1 -  \tan(x). \tan(y)  }  \\

 \sf \: Now \:  \:  putting \:  \:  the  \:  \: value  :  -

 \implies\large \sf \:  \tan(x + y)  =  \frac{ \frac{n}{n + 1} +  \frac{1}{2n + 1}  }{1  - ( \frac{n}{n + 1})( \frac{1}{2n  +  1}  )}  \\

 \implies\large \sf \:  \tan(x + y)  =  \frac{ \frac{n(2n + 1) + n + 1}{(n + 1)(2n + 1)}  }{1  - ( \frac{n}{(n + 1)(2n + 1)})}  \\

\implies \large \sf \:  \tan(x + y)  =  \frac{ \frac{2n {}^{2}  + n + n + 1}{(n + 1)(2n + 1)}  }{ ( \frac{(n + 1)(2n + 1) - n}{(n + 1)(2n + 1)})}  \\

\implies \large \sf \:  \tan(x + y)  =  \frac{ \frac{2n {}^{2}  + 2 n + 1}{(n + 1)(2n + 1)}  }{ ( \frac{2 {n}^{2}  + n + 2n + 1 - n}{(n + 1)(2n + 1)})}  \\

 \implies \sf \:  \tan(x + y) =  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \\   \sf \frac{ (2n^{2}  + 2 n + 1)}{\cancel{(n + 1)(2n + 1)}}  \times  \frac{\cancel{(n + 1)(2n + 1)}}{ (2 {n}^{2}  + \cancel{ n} + 2n + 1 -\cancel{ n} )}\\

 \implies \sf \tan(x + y)  =  \frac{2 {n}^{2} + 2n + 1 }{2 {n}^{2}  + 2n + 1}  \\

 \implies \sf \:  \tan(x + y)  = 1

Similar questions