tanx /secx+1 + secx+1/tanx=
1) 2cosecx 2) 2secx
3) 2sinx. 4)2cosx
Answers
Solution :
Now,
=
=
=
=
{ since }
=
=
=
{by cancelling (secx+1) from both the numerator and the denominator}
=
=
=
= 2 cosecx
Thus, option ( 1 ) is correct
Answer:
+
tanx
secx+1
= \frac{tanx*tanx+(secx+1)(secx+1)}{(secx+1)tanx}
(secx+1)tanx
tanx∗tanx+(secx+1)(secx+1)
= \frac{tan^{2}x+sec^{2}x+2secx+1}{(secx+1)tanx}
(secx+1)tanx
tan
2
x+sec
2
x+2secx+1
= \frac{(tan^{2}x+1)+sec^{2}x+2secx}{(secx+1)tanx}
(secx+1)tanx
(tan
2
x+1)+sec
2
x+2secx
= \frac{sec^{2}x+sec^{2}+2secx}{(secx+1)tanx}
(secx+1)tanx
sec
2
x+sec
2
+2secx
{ since sec^{2}x-tan^{2}x=1sec
2
x−tan
2
x=1 }
= \frac{2sec^{2}x+2secx}{(secx+1)tanx}
(secx+1)tanx
2sec
2
x+2secx
= \frac{2secx(secx+1)}{(secx+1)tanx}
(secx+1)tanx
2secx(secx+1)
= \frac{2secx}{tanx}
tanx
2secx
{by cancelling (secx+1) from both the numerator and the denominator}
= \dfrac{(\frac{2}{cosx})}{(\frac{sinx}{cosx})}
(
cosx
sinx
)
(
cosx
2
)
= \frac{2cosx}{sinx*cosx}
sinx∗cosx
2cosx
= \frac{2}{sinx}
sinx
2
= 2 cosecx
mark me as brainlist
thank you