Math, asked by shubhamkshetrepa7owc, 1 year ago

tanx /secx+1 + secx+1/tanx=
1) 2cosecx 2) 2secx
3) 2sinx. 4)2cosx


yorupesh: your answer is (1) 2cosecx

Answers

Answered by Swarup1998
8

Solution :

Now, \frac{tanx}{secx + 1} + \frac{secx + 1}{tanx}

= \frac{tanx*tanx+(secx+1)(secx+1)}{(secx+1)tanx}

= \frac{tan^{2}x+sec^{2}x+2secx+1}{(secx+1)tanx}

= \frac{(tan^{2}x+1)+sec^{2}x+2secx}{(secx+1)tanx}

= \frac{sec^{2}x+sec^{2}+2secx}{(secx+1)tanx}

{ since sec^{2}x-tan^{2}x=1 }

= \frac{2sec^{2}x+2secx}{(secx+1)tanx}

= \frac{2secx(secx+1)}{(secx+1)tanx}

= \frac{2secx}{tanx}

{by cancelling (secx+1) from both the numerator and the denominator}

= \dfrac{(\frac{2}{cosx})}{(\frac{sinx}{cosx})}

= \frac{2cosx}{sinx*cosx}

= \frac{2}{sinx}

= 2 cosecx

Thus, option ( 1 ) is correct

Answered by shelinafatima
0

Answer:

+

tanx

secx+1

= \frac{tanx*tanx+(secx+1)(secx+1)}{(secx+1)tanx}

(secx+1)tanx

tanx∗tanx+(secx+1)(secx+1)

= \frac{tan^{2}x+sec^{2}x+2secx+1}{(secx+1)tanx}

(secx+1)tanx

tan

2

x+sec

2

x+2secx+1

= \frac{(tan^{2}x+1)+sec^{2}x+2secx}{(secx+1)tanx}

(secx+1)tanx

(tan

2

x+1)+sec

2

x+2secx

= \frac{sec^{2}x+sec^{2}+2secx}{(secx+1)tanx}

(secx+1)tanx

sec

2

x+sec

2

+2secx

{ since sec^{2}x-tan^{2}x=1sec

2

x−tan

2

x=1 }

= \frac{2sec^{2}x+2secx}{(secx+1)tanx}

(secx+1)tanx

2sec

2

x+2secx

= \frac{2secx(secx+1)}{(secx+1)tanx}

(secx+1)tanx

2secx(secx+1)

= \frac{2secx}{tanx}

tanx

2secx

{by cancelling (secx+1) from both the numerator and the denominator}

= \dfrac{(\frac{2}{cosx})}{(\frac{sinx}{cosx})}

(

cosx

sinx

)

(

cosx

2

)

= \frac{2cosx}{sinx*cosx}

sinx∗cosx

2cosx

= \frac{2}{sinx}

sinx

2

= 2 cosecx

mark me as brainlist

thank you

Similar questions