Math, asked by sunny8771, 7 months ago

( tanx + secx) ( cotx+ cosecx)differentiate it​

Answers

Answered by aryan073
3

Given :

\\ \bullet\bf{Differentiation \: of \: the \: following \: expression }

\\ \red\bigstar\bf{(tanx+secx)(cotx+cosecx)}

To Find :

\\ \bullet\bf{Differentiation \: of \: the \: following \: equation =?}

Solution :

Differentiating both sides with respect to x x :

\\ \boxed{\blue{\bf{By \: using \: Product \: Rule}}}

 \\  \implies \sf \: y = (tanx + secx).(cotx + cosecx) \\  \\  \\  \implies \sf \:  \frac{dy}{dx}  = (tanx + secx) \frac{d}{dx} \bigg (cotx + cosecx \bigg) + (cotx + cosecx) \frac{d}{dx}  \bigg(tanx + secx \bigg) \\  \\  \\  \implies \sf \:  \frac{dy}{dx}  = (tanx + secx) \bigg( -  {cosec}^{2} x - cotx.cosecx \bigg) + (cotx + cosecx) \bigg( {secx}^{2}  + secx.tanx \bigg) \\  \\  \\  \implies \sf \:  \frac{dy}{dx}  =  (tanx + secx) \bigg( -  {cosec}^{2} x - cotx.tanx \bigg) + (cotx + cosecx) \bigg( {sec}^{2} x + secx.tanx \bigg) \\  \\  \\  \implies \sf \:  \frac{dy}{dx}  = (cotx + cosecx)(secx + tanx)secx - cosecx(tanx + secx)(cotx + cosecx) \\  \\  \\  \implies \sf \:  \frac{dy}{dx}  = (cotx + cosecx)(secx + tanx)(secx - cosecx) \\  \\  \\  \implies \boxed{ \sf{ \frac{dy}{dx}  = (cotx + cosecx)(secx + tanx)(secx - cosecx}} \pink \bigstar

\green{\underline{\sf{Differentiation \: of \: (tanx+secx)(cotx+cosecx) \: is}}}

 \red \bigstar \boxed{ \sf{ \frac{dy}{dx}  = (cotx + cosecx)(secx + tanx)(secx - cosecx}}

Formulas :

 \bf \: (1) \:  \frac{d}{dx} sinx = cosx \\

  \\  \bf \: (2) \:  \frac{d}{dx} cosx =  - sinx \\

  \\ \bf \: (3)  \frac{d}{dx} tanx =  {sec}^{2} x

 \\  \bf \: (4) \frac{d}{dx} cotx =  -  {cosec}^{2} x

  \\ \bf \: (5) \:  \frac{d}{dx} secx = secx.tanx

  \\ \bf \: (6) \:  \frac{d}{dx} cosecx =  - cosecx.cotx

  \\ \bf \: (7)  \: \frac{d}{dx} logx =  \frac{1}{x}

  \\  \bf \: (8) \frac{d}{dx}  {x}^{n}  = n {x}^{n - 1}

 \\  \bf \: (9) \:  \frac{d}{dx} cu = c \frac{du}{dx}

  \\ \bf \: (10) \:  \frac{d}{dx} (uv) = u \frac{dv}{dx}  + v \frac{du}{dx} .... \red{ \bf{ (\: product \: rule)}}

 \\  \bf \: (11) \frac{d}{dx}  \frac{u}{v}  =  \frac{v \frac{du}{dx}  - u \frac{dv}{dx} }{ {v}^{2} }  \:  \: .... \red{ \bf{(quotient \: rule)}}

Similar questions