Tanx + tan2x +tan3x = tanxtan2xtan3x then |sin3x+cos3x|
Answers
Answered by
0
Answer:
Step-by-step explanation:
=sin²cos³2tan³
Answered by
5
Answer:
1
Step-by-step explanation:
Tan 3x=tan(2x+x)
Tan3x=tan2x+tanx/1-tan2xtanx
Tan3x(1-tan2xtanx)=tan2x+tanx
Therefore, tan3x-tan2x-tanx= tan3x+tan2x+tanx
2tan^2x+2tanx=0
Tan2x+tanx=0
sin2x/cos2x+sinx/cosx=0
Sin^2xcosx+cos2xsinx/cos2xcosx=0
Sin(2x+x)/cos2xcosx=0
Sin3x=0
Sin^23x+cos^3x=1
Cosx=+1or-1, sinx=0
Hence,|sin3x+cosx|=1
Similar questions