tanx+tany+tanz=tanx×tany×tanz prove
Answers
Answered by
7
2 answers · Mathematics
Best Answer
tan(x + y + z)
= [ tan(x+y) + tan z ] /[1 - tan(x+y)tan(z)]
= [ {tan(x) + tan(y)}/(1 - tan(x)tan(y)) + tan z ] /[1 - tan(z){tan x + tan y) /(1 - tan x tan y) ]
= [ {tan(x) + tan(y) + tan z - tan(x)tan(y) tan(z) ] /[1 - tan(x) tan(y) - tan(z)tan(x) - tan(y)tan(z)]
LHS = tan(x - y) + tan( y - z) = (tanx - tany) / (a million + tanx tany) + (tany - tanz) / (a million + tany tanz) = [(tanx - tany) (a million + tany tanz)... show
Best Answer
tan(x + y + z)
= [ tan(x+y) + tan z ] /[1 - tan(x+y)tan(z)]
= [ {tan(x) + tan(y)}/(1 - tan(x)tan(y)) + tan z ] /[1 - tan(z){tan x + tan y) /(1 - tan x tan y) ]
= [ {tan(x) + tan(y) + tan z - tan(x)tan(y) tan(z) ] /[1 - tan(x) tan(y) - tan(z)tan(x) - tan(y)tan(z)]
LHS = tan(x - y) + tan( y - z) = (tanx - tany) / (a million + tanx tany) + (tany - tanz) / (a million + tany tanz) = [(tanx - tany) (a million + tany tanz)... show
Answered by
11
tanx+tany+tanz=tanx×tany×tanz
Proved below.
Step-by-step explanation:
Given:
Let x+y+z=π
⇒x+y=π−z
Now taking tan on both side, we get
tan(x+y)=tan(π−x)=−tanz
tan(x+y)=−tanz
As we know that , therefore
tan(x+y)=−tanz
tanx+tany=-tanz(1-tanxtany)
tanx+tany=-tanz+tanxtanytanz
Hence proved.
Similar questions
Environmental Sciences,
7 months ago
Physics,
7 months ago
English,
7 months ago
Math,
1 year ago
Social Sciences,
1 year ago
English,
1 year ago