Taylor's theorem with cauchy's form of remainder proof
Answers
Here's ur answer..
Taylor's theorem with Cauchy's form of remainder proof..
Hope it helps you!!
Proof for Taylor's theorem with Cauchy's form of remainder:
Statement: If f is a function defined in [a,b] such that
(i.) f ,f¹, f¹¹.....fⁿ⁻¹ are continuous in [a,b]
(ii.) fⁿ(x) exists in (a,b) then there exists at least one real number θ ∈ (0,1), then show that f(b) = f(a) + (b-a) f¹(a) + (b-a)²/2 f¹¹(a) +.....+ (b-a)ⁿ⁻¹/(n-1) fⁿ⁻¹(a) + (b-a) { (b-a)ⁿ⁻¹ (1-θ)ⁿ⁻¹ }/n-1 fⁿ{a+θ(b-a)}
Proof:
Consider a function ∅ defined as
⇒ Φ(x) = f(x) + (b-x) f¹(x) + (b-x)²/2 f¹¹(x) +.....+ (b-x)ⁿ⁻¹/(n-1) fⁿ⁻¹(x) + (b-x) A
Where, A = constant so that Φ(a) = Φ(b)
⇒ Φ(a) = f(a) + (b-a) f¹(a) + (b-a)²/2 f¹¹(a) +.....+ (b-a)ⁿ⁻¹/(n-1) fⁿ⁻¹(a) + (b-a) A
⇒ Φ(b) = f(b) + (b-b) f¹(x) + (b-b)²/2 f¹¹(b) +.....+ (b-b)ⁿ⁻¹/(n-1) fⁿ⁻¹(b) + (b-b) A
⇒ Φ(b) = f(b)
⇒ Φ(a) = f(a) + (b-a) f¹(a) + (b-a)²/2 f¹¹(a) +.....+ (b-a)ⁿ⁻¹/(n-1) fⁿ⁻¹(a) + (b-a) A = f(b)
Now, given that
1.) Φ(x) is continuous in [a,b]
2.) Φ(x) is derivable in (a,b)
3.) Φ(a) = Φ(b)
So, we can apply Rolles theorem
⇒ c ∈ (a,b) then Φ¹(c) = 0
⇒ Φ¹(x) = f¹(x) + { -f¹(x) + ( b-x )f¹¹(x) } + {-( b-x )f¹¹(x) + ( -b-x )²/2 f¹¹(x) }+......+ { -( b-x )ⁿ⁻²/n-2 fⁿ⁻¹(x) +-( b-x )ⁿ⁻¹/n-1 fⁿ(x) }
⇒ Φ¹(x) = -( b-x )ⁿ⁻¹/n-1 fⁿ(x)
⇒ Φ¹(a+θ(b-a)) = (b-(a+θ(b-a))ⁿ⁻¹/n-1 fⁿ{a+θ(b-a)}
⇒ Φ¹(a+θ(b-a)) = { b-a-θb+θa }ⁿ⁻¹/n-1 fⁿ{a+θ(b-a)}
⇒ Φ¹(a+θ(b-a)) = { (b-a) (1-θ) }ⁿ⁻¹/n-1 fⁿ{a+θ(b-a)}
⇒ Φ¹(a+θ(b-a)) = { (b-a)ⁿ⁻¹ (1-θ)ⁿ⁻¹ }/n-1 fⁿ{a+θ(b-a)}
Therefore A = { (b-a)ⁿ⁻¹ (1-θ)ⁿ⁻¹ }/n-1 fⁿ{a+θ(b-a)}
⇒ f(b) = f(a) + (b-a) f¹(a) + (b-a)²/2 f¹¹(a) +.....+ (b-a)ⁿ⁻¹/(n-1) fⁿ⁻¹(a) + (b-a) A
⇒ f(b) = f(a) + (b-a) f¹(a) + (b-a)²/2 f¹¹(a) +.....+ (b-a)ⁿ⁻¹/(n-1) fⁿ⁻¹(a) + (b-a) { (b-a)ⁿ⁻¹ (1-θ)ⁿ⁻¹ }/n-1 fⁿ{a+θ(b-a)} where 0<θ<1
Hence, Taylor's theorem with cauchy's form of remainder proved.
#SPJ2