Math, asked by gowdavarshitha73, 11 months ago

te value of p for equation 2x2 - 4x + p = 0 to have real roots will be ​

Answers

Answered by ItSdHrUvSiNgH
13

Step-by-step explanation:

 \huge\blue{\underline{\underline{\bf Question:-}}}

 \\value \:  \: of \:  \: p ? \\  \\  2{x}^{2}  - 4x + p = 0

 \huge\blue{\underline{\underline{\bf Answer:-}}}

 \\  \leadsto 2 {x}^{2}  - 4x + p = 0 \\  \\  here \\ \\  if \:  \: roots \:  \: are \:  \: real... \\ \\  then \:  \: \boxed{  {b}^{2}  - 4ac \geq 0} \\  \\  \implies  {b}^{2}  - 4ac \geq 0 \\  \\  \implies  {( - 4)}^{2}  - 4(2)(p) \geq 0 \\  \\  \implies 16 - 8p \geq 0 \\  \\  \implies 8p \leq 16 \\  \\ \huge \boxed{ \implies p \leq 2} \\ \\ If \: \: D = {b}^{2} - 4ac = 0 \: \: then \: \: both \: \: roots \: \: are \\ real \: \: and \: \: equal \\ \\ If \: \: D = {b}^{2} - 4ac > 0 \: \: then \: \: both \: \: roots \: \: are \\ real \: \: and \: \: not \: \: equal \\ \\ If \: \: D = {b}^{2} - 4ac < 0 \: \: then \: \: both \: \: roots \: \: are \\ not \: \:  real

Similar questions