Math, asked by gunavchugh, 11 months ago

Tell ans of 2 plz and 8

Attachments:

Answers

Answered by DaIncredible
3

Step-by-step explanation:

3. Given,

x = 3 + √8

Then,

 \frac{1}{x}  =  \frac{1}{3  +   \sqrt{8} }  \\

Rationalizing the denominator we get:

 \frac{1}{x}  =  \frac{1}{3 +  \sqrt{8} }  \times  \frac{3  -  \sqrt{8} }{3  -   \sqrt{8} }  \\  \\  \frac{1}{x}  =  \frac{3  -   \sqrt{8} }{ {(3)}^{2}  -  {( \sqrt{8} )}^{2} }  \\  \\  \frac{1}{x}  =  \frac{3 -  \sqrt{8} }{9 - 8}  \\  \\   \bf \frac{1}{x}  = 3 -  \sqrt{8}

Now,

(i) \: x +  \frac{1}{x}  = 3 +  \sqrt{8}  + 3  -  \sqrt{8}  \\  \\ x +   \frac{1}{x}   = 3 + 3 \\  \\ x +  \frac{1}{x}  = 6 \\  \\  \bf squaring \: both \: the \: sides \: we \: get \\  \\  {(x +  \frac{1}{x} )}^{2}  =  {(6)}^{2}  \\  \\  {(x)}^{2}  +  {( \frac{1}{x}) }^{2}  + 2 \times x \times  \frac{1}{x}  = 36 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 36 \\  \\  \bf {x}^{2}  +  \frac{1}{ {x}^{2} }  = 34

(ii)

Squaring the above equation again we get:

 {( {x}^{2} +  \frac{1}{ {x}^{2} }  )}^{2}  =  {(34)}^{2}  \\  \\  {( {x}^{2} )}^{2}  +  {( \frac{1}{ {x}^{2} } )}^{2}  + 2 .  {x}^{2} . \frac{1}{ {x}^{2} }  = 1156 \\  \\  {x}^{4}  +  \frac{1}{ {x}^{4} }   + 2 = 1156 \\  \\  \bf  {x}^{4}  +  \frac{1}{ {x}^{4} }  = 1154

8.

 \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  = a + b \sqrt{3}  \\

L.H.S.

Rationalizing the denominator we get:

 =  \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  \times  \frac{7 - 4 \sqrt{3} }{7 - 4 \sqrt{3} }   \\  \\  =  \frac{5(7 - 4 \sqrt{3}) + 2 \sqrt{3}(7 - 4 \sqrt{3} )  }{ {(7)}^{2} -  {(4 \sqrt{3}) }^{2}  }  \\  \\  =  \frac{35 - 20 \sqrt{3} + 14 \sqrt{3} - 24  }{49 - 48}  \\  \\  = 11 - 6 \sqrt{3}

Equating L.H.S and R.H.S we get,

11 - 6 \sqrt{3}  = a + b \sqrt{3}  \\  \\  \bf a = 11 \:  \: and \:  \: b  =  - 6

Similar questions