tell answer for 50 points
Attachments:
Answers
Answered by
3
Given :-
If α and β are roots of the equation x² - 3x + 2 = 0
To Find :-
Equation whose roots are α + 1 and β + 1
Solution :-
⇒ x² - 3x + 2 = 0
⇒ x² - (x + 2x) + 2 = 0
⇒ x² - x - 2x + 2 = 0
⇒ x(x - 1) - 2(x - 1) = 0
⇒ (x - 1)(x - 2) = 0
⇒ x = 2 & 1
Now
⇒ α + 1
⇒ 2 + 1
⇒ 3
⇒ β + 1
⇒ 1 + 1
⇒ 2
Sum of zeroes :
⇒ 2 + 3
⇒ 5
Product of zeroes :
⇒ 2 × 3
⇒ 6
Now, equation is :
⇒ x² - (α + β)x + αβ
⇒ x² - 5x + 6
Answered by
0
Answer:
α+β=3;αβ=2
S=(α+1+β+1)=(α+β+2)=5
P=(α+1)(β+1)=α+β+αβ+1
=3+2+1=6
∴ Equation whose roots are (α+1),(β+1) is x
2
−Sx+P=0 i.e., x
2
−5x+6=0
Similar questions