Math, asked by sridevi33720, 7 hours ago

Tell answer for the question in the photo...pls don't send Unwanted Answers to score points. Pls help me

Attachments:

Answers

Answered by MrImpeccable
14

ANSWER:

Given:

  • (√26 + 5)/(√26 - 5) = a - b√26

To Find:

  • Value of a and b

Solution:

We are given that,

\implies\dfrac{\sqrt{26}+5}{\sqrt{26}-5}=a-b\sqrt{26}

Multiplying and dividing by √26 + 5,

\implies\dfrac{\sqrt{26}+5}{\sqrt{26}-5}\times\dfrac{\sqrt{26}+5}{\sqrt{26}+5} =a-b\sqrt{26}

\implies\dfrac{(\sqrt{26}+5)(\sqrt{26}+5)}{(\sqrt{26}-5)(\sqrt{26}+5)}=a-b\sqrt{26}

We know that,

\hookrightarrow(x+y)(x-y)=x^2-y^2

So,

\implies\dfrac{(\sqrt{26}+5)^2}{(\sqrt{26}-5)(\sqrt{26}+5)}=a-b\sqrt{26}

\implies\dfrac{(\sqrt{26}+5)^2}{(\sqrt{26})^2-(5)^2}=a-b\sqrt{26}

We know that,

\hookrightarrow(x+y)^2=x^2+y^2+2xy

\implies\dfrac{(\sqrt{26})^2+5^2+10\sqrt{26}}{26-25}=a-b\sqrt{26}

\implies\dfrac{26+25+10\sqrt{26}}{1}=a-b\sqrt{26}

\implies51+10\sqrt{26}= a-b\sqrt{26}

\implies51-(-10\sqrt{26})= a-b\sqrt{26}

On comparing the terms,

\implies\bf a=51\:,\:\:b=-10

Formulae Used:

  • \hookrightarrow(x+y)(x-y)=x^2-y^2
  • \hookrightarrow(x+y)^2=x^2+y^2+2xy

Learn More:

\boxed{\begin{minipage}{7 cm}\boxed{\bigstar\:\:\textbf{\textsf{Algebraic\:Identities}}\:\bigstar}\\\\1)\bf\:(A+B)^{2} = A^{2} + 2AB + B^{2}\\\\2)\bf\: (A-B)^{2} = A^{2} - 2AB + B^{2}\\\\3)\bf\: A^{2} - B^{2} = (A+B)(A-B)\\\\4)\bf\: (A+B)^{2} = (A-B)^{2} + 4AB\\\\5)\bf\: (A-B)^{2} = (A+B)^{2} - 4AB\\\\6)\bf\: (A+B)^{3} = A^{3} + 3AB(A+B) + B^{3}\\\\7)\bf\:(A-B)^{3} = A^{3} - 3AB(A-B) - B^{3}\\\\8)\bf\: A^{3} + B^{3} = (A+B)(A^{2} - AB + B^{2})\\\\9)\bf\: A^{3} - B^{3} = (A-B)(A^{2} + AB + B^{2})\\\\ \end{minipage}}

Answered by CoruscatingGarçon
2

Answer:

the value of a is 51 and b is -10.

#Be Brainly

Hope it helps!!

Similar questions