Math, asked by pradeepsinghal, 1 year ago

tell me answer in details

Attachments:

Answers

Answered by sushant2505
2
Hi...☺

Here is your answer...✌

 {2}^{x}  =  {4}^{y}  =  {8}^{z}  \\  \\  {2}^{x}  =  {2}^{2y}  =  {2}^{3z}  \\ \\  =  > x = 2y = 3z  \:  \:  \:  \:  \:  \: .....(1) \\  \\ now \\  \\  \frac{1}{2x}  +  \frac{1}{4y}  +  \frac{1}{6z}  =  \frac{24}{7}  \\  \\  \frac{1}{2 \times (3z)}  +  \frac{1}{2 \times ( 3z)}  +  \frac{1}{6z}  =  \frac{24}{7}  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  |from \: (1)| \\  \frac{1}{6z}  +  \frac{1}{6z}  +  \frac{1}{6z}  =  \frac{24}{7}  \\  \\  \frac{3}{6 z}  = \frac{24}{7}  \\  \\  \frac{1}{2z}  =  \frac{24}{7}  \\  \\  \frac{1}{z}  =  \frac{24 \times 2}{7}  \\  \\  \frac{1}{z}  =  \frac{48}{7}  \\  \\  =  > z =  \frac{7}{48}

HENCE,

Option (C) 7/48 is the correct answer
Similar questions