Math, asked by kichushanavas15, 3 months ago

Tell me fast.... integrity maths​

Attachments:

Answers

Answered by shadowsabers03
43

Given to evaluate,

\displaystyle\longrightarrow I=\int\limits_0^{\frac{\pi}{2}}\int\limits_{\frac{\pi}{2}}^{\pi}\cos(x+y)\ dy\ dx

or,

\displaystyle\longrightarrow I=\int\limits_0^{\frac{\pi}{2}}\left[\int\limits_{\frac{\pi}{2}}^{\pi}\cos(x+y)\ dy\right]\ dx\quad\quad\dots (1)

Note that x and y are treated as variables independent to each other.

Substitute,

\longrightarrow u=x+y

Differentiating wrt y, we get,

\longrightarrow dy=du

At y=\dfrac{\pi}{2} ,

\longrightarrow u=x+\dfrac{\pi}{2}

At y=\pi,

\longrightarrow u=x+\pi

Then (1) becomes,

\displaystyle\longrightarrow I=\int\limits_0^{\frac{\pi}{2}}\left[\int\limits_{x+\frac{\pi}{2}}^{x+\pi}\cos u\ du\right]\ dx

\displaystyle\longrightarrow I=\int\limits_0^{\frac{\pi}{2}}\Big[\sin u\ du\Big]_{x+\frac{\pi}{2}}^{x+\pi}\ dx

\displaystyle\longrightarrow I=\int\limits_0^{\frac{\pi}{2}}\Big(\sin\left(x+\pi\right)-\sin\left(x+\dfrac{\pi}{2 }\right)\Big)\ dx

\displaystyle\longrightarrow I=\int\limits_0^{\frac{\pi}{2}}\Big(\sin\left(x+\pi\right)\Big)\ dx-\int\limits_0^{\frac{\pi}{2}}\Big(\sin\left(x+\dfrac{\pi}{2 }\right)\Big)\ dx

\displaystyle\longrightarrow I=-\Big[\cos(x+\pi)\Big]_0^{\frac{\pi}{2}}+\left[\cos\left(x+\dfrac{\pi}{2}\right)\right]_0^{\frac{\pi}{2}}

\displaystyle\longrightarrow I=-\cos\left(\dfrac{3\pi}{2}\right)+\cos\pi+\cos\pi-\cos\left(\dfrac{\pi}{2}\right)

\displaystyle\longrightarrow\underline{\underline{I=-2}}

Hence -2 is the answer.

Answered by mathdude500
5

\large\underline\purple{\bold{Solution :-  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

 \tt \: I=\int\limits_0^{\frac{\pi}{2}}\int\limits_{\frac{\pi}{2}}^{\pi}\tt \: cos(x+y)\tt dy\tt dx

\tt \: I=\int\limits_0^{\frac{\pi}{2}} \bigg(\int\limits_{\frac{\pi}{2}}^{\pi}\tt \: cos(x+y)\tt dy \bigg)\tt dx

 \tt \: I=\int\limits_0^{\frac{\pi}{2}}\Big[\sin (x \:  +  \:y )\ \Big]_{\frac{\pi}{2}}^{\pi}\ dx

 \tt \: I=\int\limits_0^{\frac{\pi}{2}}\Big(\sin\left(x+\pi\right)-\sin\left(x+\dfrac{\pi}{2 }\right)\Big)\ dx

\tt \: I=\int\limits_0^{\frac{\pi}{2}}\Big( - sinx- \: cosx \Big)\ dx

\tt \: I= \: [cosx \:  -  \: sinx]_0^ \frac{\pi}{2}

\tt \: I= \: (cos \frac{\pi}{2}  - sin \frac{\pi}{2} ) - (cos0 \:  - sin0)

\tt \: I= \: (0 - 1) - (1 - 0)

\tt \: I= \:  -  \: 2

 \tt \:  \therefore\int\limits_0^{\frac{\pi}{2}}\int\limits_{\frac{\pi}{2}}^{\pi}\tt \: cos(x+y)\tt dy\tt dx \:  =  \:  -  \: 2

Similar questions