Physics, asked by abhijaynathan007, 1 year ago

Tell me how to derive this Sn=u+a(n-1)​

Answers

Answered by ShivamKashyap08
11

Correct question:-

How to derive \bold{S_n = u + \frac{a}{2}[2n - 1]}

\huge{\bold{\underline{\underline{....Answer....}}}}

\huge{\bold{\underline{Given:-}}}

Let's assume some points.

u = initial velocity.

a = acceleration.

\huge{\bold{\underline{Explanation:-}}}

Distance covered in (n) seconds.

From second kinematic equation

\large{\bold{S = ut + \frac{1}{2}at^2}}

Substituting the values.

\large{ \implies S_1 = u(n) + \frac{1}{2}a(n)^2}

\large{\boxed{ \therefore S_1 = un + \frac{1}{2}an^2}}

Distance covered in (n - 1) seconds.

From Second kinematic equation.

\large{\bold{S_2 = ut + \frac{1}{2} at^2}}

Substituting the values.

\large{ \implies S_2 = u(n - 1) + \frac{1}{2}a (n - 1)^2}

\large{\boxed{ \therefore S_2 =  u(n - 1) + \frac{1}{2}a (n^2 + 1 - 2n)}}

To get Sn we need to

\large{\bold{S_n = S_1 - S_2}}

Substituting the values.

\large{ \implies S_n =  \left[un + \frac{1}{2}an^2 \right] - \left[ un - u + \frac{1}{2}a (n^2 + 1 - 2n) \right]}

Simplifying

\large{ \implies S_n = \cancel{un} + \cancel{\frac{1}{2} an^2} - \cancel{un} + u -  \cancel{ \frac{1}{2} an^2} - \frac{1}{2}a[1 - 2n]}

Now,

\large{ \implies S_n = u + \frac{1}{2}a[2n - 1]}

\huge{\boxed{\boxed{S_n = u + \frac{a}{2}[2n - 1]}}}

Hence derived.

Similar questions