Math, asked by raj12337, 1 year ago

Tell me this please tell me correctly​

Attachments:

ishika7968: yaa it is correct

Answers

Answered by Anonymous
17
 \huge{\underline{\underline{Question\::-}}}

>> If value of Sin∅ =  \dfrac{\sqrt{3}}{2} , Find out all ratio of ∅ .

 \huge{\underline{\underline{Answer\::-}}}

 \underline{\underline{Given\::-}}

Sin∅ =  \dfrac{\sqrt{3}}{2}

• Then As we know that

Sin∅ =  \dfrac{Perpendicular }{Hypotenuse}

>>Then from above's information we can get the ratio of base with respect to the Perpendicular and Hypotenuse

 \underline{\underline{Solving\::-}}

• Let

>>the common divisor be m

>> base be x

• Then

>> Perpendicular =  \sqrt{3} m

>> Hypotenuse = 2 m

• By using Pythagorean theorem

 Hypotenuse^2 = Perpendicular^2 + Base^2

=>  (2m)^2 = (\sqrt{3}m)^2 + x^2

=>  4m^2 = 3m^2 + x^2

=>  x^2 = 4m^2 - 3m^2

=>  x^2 = m^2

=>  x = \sqrt{m^2}

=> x = m

• Now we will find out other ratio

>> Cos∅ =  \dfrac{Base}{Hypotenuse}

=  \dfrac{m}{2m}

= \dfrac{1}{2}

>> Tan∅ =  \dfrac{Perpendicular}{Base }

=  \dfrac{\sqrt{3}m}{m}

=  \dfrac{\sqrt{3}}{1}

=  \sqrt{3}

>> Cot∅ =  \dfrac{Base}{Perpendicular}

=  \dfrac{m}{\sqrt{3}m}

=  \dfrac{1}{\sqrt{3}}

>> Cose∅ =  \dfrac{Hypotenuse}{Perpendicular}

=  \dfrac{2m}{\sqrt{3}m}

=  \dfrac{2}{\sqrt{3}}

>> Sec∅ =  \dfrac{Hypotenuse}{Base}

=  \dfrac{2m}{m}

=  \dfrac{2}{1}

= 2


guduuu: awesome answer bro❤
Anonymous: Thanks dii ☺️
Similar questions