Math, asked by enga95z, 6 months ago

tell the answer ..!!!!!​

Attachments:

Answers

Answered by BrainlyEmpire
211

Answer:-

\large\bigstar\;\underline{\boxed{\sf \dfrac{dy}{dx}=x\;e^{x}\Bigg\lgroup x+2\Bigg\rgroup}}

Explanation:

\rule{300}{1.5}

Given equation,

\longrightarrow\sf y = x^{2}\;e^{x}

Differentiating it,

\longrightarrow\sf \dfrac{dy}{dx}=\dfrac{d\;\bigg(x^{2}\;e^{x}\bigg)}{dx}

Applying the product rule we get,

\longrightarrow\sf \dfrac{dy}{dx}=\left\lgroup x^{2}\;.\;\dfrac{d\;\bigg(e^{x}\bigg)}{dx}\right\rgroup+\left\lgroup e^{x}\;.\;\dfrac{d\;\bigg(x^{2}\bigg)}{dx}\right\rgroup\\\\\\\\\longrightarrow\sf \dfrac{dy}{dx}=\Bigg\lgroup x^{2}\;.\;e^{x}\Bigg\rgroup+\Bigg\lgroup e^{x}\;.\;2x \Bigg\rgroup\\\\\\\\\longrightarrow\sf \dfrac{dy}{dx}= x^{2}\;e^{x}+ 2\;e^{x}\;x

\\

\longrightarrow\sf \dfrac{dy}{dx}=x\;e^{x}\Bigg\lgroup x+2 \Bigg\rgroup\\\\\\\\\longrightarrow \large{\underline{\boxed{\red{\sf \dfrac{dy}{dx}=x\;e^{x}\Bigg\lgroup x+2 \Bigg\rgroup}}}}

\\

Hence Solved!

\\

Formulas used:-

\boxed{\begin{minipage}{7.5 cm} \underline{\textsf{\textbf{Formulas:}}}\\\\\bullet\;\sf\dfrac{d\;(e^{x})}{dx}=e^{x}\\\\\\\bullet\;\sf\dfrac{d\;(x^{n})}{dx}=n\;x^{n-1}\\\\\\\bullet\;\sf\dfrac{d\;[f(x)]\;[g(x)]}{dx}=f(x).\dfrac{d\;[g(x)]}{dx}+g(x).\dfrac{d\;[f(x)]}{dx}\end{minipage}}

\rule{300}{1.5}

Note :- kindly see this answer from website to see the formula shown here :)

______________________________________________________________________________________

Answered by BabeHeart
109

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \mathbb{SOLUTION  :-}\\\\

 ❥\bf \dfrac{dy}{dx}=\dfrac{d\;\bigg(x^{2}\;e^{x}\bigg)}{dx}\\\\

 ❥ \tiny \sf \dfrac{dy}{dx}=\left\lgroup x^{2}\;.\;\dfrac{d\;\bigg(e^{x}\bigg)}{dx}\right\rgroup+\left\lgroup e^{x}\;.\;\dfrac{d\;\bigg(x^{2}\bigg)}{dx}\right\rgroup\\\\\\\\\ ❥ \sf \dfrac{dy}{dx}=\Bigg\lgroup x^{2}\;.\;e^{x}\Bigg\rgroup+\Bigg\lgroup e^{x}\;.\;2x \Bigg\rgroup\\\\\\\\ ❥ \sf \dfrac{dy}{dx}= x^{2}\;e^{x}+ 2\;e^{x}\;x

\\

 ❥ \sf \dfrac{dy}{dx}=x\;e^{x}\Bigg\lgroup x+2 \Bigg\rgroup\\\\\\\ ❥   \large{\underline{\boxed{\blue{\bf \dfrac{dy}{dx}=x\;e^{x}\Bigg\lgroup x+2 \Bigg\rgroup}}}}

\\

━━━━━━━━━━━━━━━━━━━━━━

━━━━━━━━━━━━━━━━━━━━━━

Similar questions