Hindi, asked by pranaysethi08, 10 hours ago

Tell the answers of this pls

Attachments:

Answers

Answered by siddhesh0024
1

Answer:

math]f(x)=\displaystyle\frac{x}{\sqrt{x^4+10x^2-96x-71}}[/math]

It has the following elementary antiderivative:

[math]F(x)=-{\frac {1}{8}}\ln \left((x^{6}+15x^{4}-80x^{3}+27x^{2}-528x+781){\sqrt {x^{4}+10x^{2}-96x-71}}-(x^{8}+20x^{6}-128x^{5}+54x^{4}-1408x^{3}+3124x^{2}+10001)\right) [/math]

but the integral of the similar function (where [math]71[/math] is replaced by [math]72[/math])

[math]g(x)=\displaystyle\frac{x}{\sqrt{x^4+10x^2-96x-72}}[/math]

Answered by ashiishu2
1

Answer:

I don't now समास का नाम but I know समासविग्रह

Pls mark my answer as Brainliest Pls

Attachments:
Similar questions