Math, asked by aarchi82, 1 year ago

telll this question

Attachments:

Answers

Answered by siddhartharao77
3

Answer:

55°,20°

Step-by-step explanation:

Given, AB is a diameter and ∠ACB = 90°.

(i)

In ΔABC,

⇒ ∠A + ∠B + ∠C = 180°

⇒ 35° + ∠CBA + 90° = 180°

⇒ ∠CBA = 180° - (90° + 35°)

⇒ ∠CBA = 180° - 125°

⇒ ∠CBA = 55°.


∴∠QCB = 35°.


(ii)

From ABQ,

⇒ ∠ABC + ∠CBQ = 180°

⇒ 55° + ∠CBQ = 180°

⇒ ∠CBQ = 125°

Now,

∠CQA = 180° - (QCB + CBQ)

           = 180° - (35° + 125°)

           = 180° - 160°

           = 20°


Hope it helps!

Answered by Siddharta7
0

Step-by-step explanation:

In ΔABC,

⇒ ∠A + ∠B + ∠C = 180°

⇒ 35° + ∠CBA + 90° = 180°

⇒ ∠CBA = 180° - (90° + 35°)

⇒ ∠CBA = 180° - 125°

⇒ ∠CBA = 55°.

∴∠QCB = 35°.

(ii)

From ABQ,

⇒ ∠ABC + ∠CBQ = 180°

⇒ 55° + ∠CBQ = 180°

⇒ ∠CBQ = 125°

Now,

∠CQA = 180° - (QCB + CBQ)

           = 180° - (35° + 125°)

           = 180° - 160°

           = 20°


Similar questions