temperature Coefficient is represented by
Answers
You might have noticed on the table for specific resistances that all figures were specified at a temperature of 20° Celsius. If you suspected that this meant specific resistance of a material may change with temperature, you were right!
Resistance values for conductors at any temperature other than the standard temperature (usually specified at 20 Celsius) on the specific resistance table must be determined through yet another formula:
values for conductors at any temperature other than the standard temperature (usually specified at 20 Celsius) on the specific resistance table must be determined through yet another formula
The “alpha” (α) constant is known as the temperature coefficient of resistance and symbolizes the resistance change factor per degree of temperature change. Just as all materials have a certain specific resistance (at 20° C), they also change resistance according to temperature by certain amounts. For pure metals, this coefficient is a positive number, meaning that resistance increases with increasing temperature. For the elements carbon, silicon, and germanium, this coefficient is a negative number, meaning that resistance decreases with increasing temperature. For some metal alloys, the temperature coefficient of resistance is very close to zero, meaning that the resistance hardly changes at all with variations in temperature (a good property if you want to build a precision resistor out of metal wire!). The following table gives the temperature coefficients of resistance for several common metals, both pure and alloy:
Temperature Coefficients of Resistance at 20 Degrees Celsius
Material Element/Alloy “alpha” per degree Celsius
Nickel Element 0.005866
Iron Element 0.005671
Molybdenum Element 0.004579
Tungsten Element 0.004403
Aluminum Element 0.004308
Copper Element 0.004041
Silver Element 0.003819
Platinum Element 0.003729
Gold Element 0.003715
Zinc Element 0.003847
Steel* Alloy 0.003
Nichrome Alloy 0.00017
Nichrome V Alloy 0.00013
Manganin Alloy +/- 0.000015
Constantan Alloy -0.000074
* = Steel alloy at 99.5 percent iron....
pllzzzzzzz follow me
Explanation:
➡️A temperature coefficient describes the relative change of a physical property that is associated with a given change in temperature.
➡️It is usually expressed in ppm/°C (parts per million/Celcius.
☢️PLEASE MARK AS BRAINLIEST☢️