Ten years ago, the ratio of the ages of a father and his son was 5:3. Five years from now, the ratio of their respective ages
will be 3:2. Find the sum of their present ages.
Answers
Solution :
Ten years ago, the ratio of the ages of a father and his son was 5:3.
Let their ages at that time be 5x and 3x years respectively .
Five years from now , that is after 15 years ;
The ratio of their respective ages is 3 : 2
> [ 5x + 15 ]/[ 3x + 15 ] = 3 : 2
> 2 [ 5x + 15] = 3[ 3x + 15]
> 10x + 30 = 9x + 45
> x = 15
Age Of Father then :
> 5x = 75 years
Are of son then :
. 3x = 45 years
Present age of father and son are 85 years and 55 years .
The sum of their present ages is 140 years.
This is the required answer .
_______________________________________
Answer:
Given :-
- Ten years ago the ratio of the ages of a father and his son is 5 : 3. Five years ago, the ratio of their respective ages will be 3 : 2.
To Find :-
- What are their present ages.
Solution :-
Let, the present age of father be 5x
And, the present age of son will be 3x
According to the question,
⇒
By doing cross multiplication we get,
⇒
⇒
⇒
➠
Hence, the required ages are,
✧ Present age of father = 5x = 5(15) = 75 years
✧ Present age of son = 3x = 3(15) = 45 years
The present age of father is 75 years and the present age of son is 45 years.