Math, asked by sonusharma45, 6 months ago

tennetiraj bhaiya

i said solve this with change into sin and cos only

plzz solve with sin and cos only ​

Attachments:

Answers

Answered by tennetiraj86
4

Answer:

answer for the given problem is given changing them into sin and cos

Attachments:
Answered by Flaunt
27

\huge\bold{\gray{\sf{Answer:}}}

Explanation:

 =  >  \frac{sec \theta + tan \theta}{sec \theta - tan \theta}  =  {(sec \theta + tan \theta)}^{2}

Now ,Taking L.H.S and rationalising it

=  >  \frac{sec \theta + tan \theta}{sec \theta - tan \theta} \times  \frac{sec \theta   +  tan \theta}{sec \theta  + tan \theta}

Identity used here :-

 \bold{\boxed{{(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy}}

 \bold{\boxed{{x}^{2}  -  {y}^{2}  = (x + y)(x - y)}}

 =  >  \frac{ {(sec \theta  + tan \theta )}^{2} }{ {sec}^{2} \theta -  {tan}^{2}  \theta  }   =  {(sec \alpha  + tan \alpha )}^{2}

\bold{\boxed{As\: ( {sec}^{2}  \theta- {tan}^{2}  \theta= 1 )}}

\bold{\boxed{As\: ( {sec}^{2}  \theta= 1 +  {tan}^{2}  \theta )}}

It can be further solve :

 =  >  {(sec \theta + tan \theta )}^{2}  =  {sec}^{2}  \alpha  + {tan}^{2} \theta  + 2sec \theta\tan \theta

 = 1 +  {tan}^{2}  \theta + {tan}^{2}  \theta  + 2sec \theta tan \theta

 = 1 + 2 {tan}^{2}  \theta  + 2sec \theta\tan \theta

Similar questions