tentukan fungsi kuadrat yang grafiknya memotong sumbu -x pada titik koordinat (4,0) dan (-3,0) serta malalui titik koordinat (2,-10)
Answers
Answered by
0
Answer:
x² - x - 12
Step-by-step explanation:
Determine the quadratic function whose graph intersects the x-axis at the coordinates (4.0) and (-3.0) and through the coordinates (2, -10)
f(x) = ax² + bx + c
f(4) = 0
=> a(4)² + 4b + c = 0
=> 16a + 4b + c = 0
f(-3) = 0
=> a(-3)² -3b + c = 0
=> 9a -3b + c = 0
16a + 4b + c = 9a -3b + c
=> 7a = -7b
=> a = - b or b = -a
f(x) = ax² - ax + c
f(2) = -10
=> a(2)² - 2a + c = -10
=> 4a - 2a +c = -10
=> 2a + c= -10
9a -3b + c = 0
=> 9a + 3a + c = 0
=> 12a + c = 0
10a = 10
=> a = 1
c = -12
f(x) = x² - x - 12
other way to solve , as it cut x -axis at 4 & - 3
=> (x - 4)(x -(-3)) = 0
=> (x - 4)(x + 3) = 0
=> x² - 4x + 3x - 12 = 0
=> x² - x - 12 = 0
=> f(x) = x² - x - 12
Similar questions