Math, asked by gudluckguy007, 10 months ago

terms of the series 0.7 +0.77 +0.777 + ..... to n terms​

Answers

Answered by Adit7788
2

Step-by-step explanation:

Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach Used :

Let’s denote the sum of the series by S:

Sum = 0.7 + 0.77 + 0.777 + …. up to n terms

= 7/9(0.9 + 0.99 + 0.999 + … up to n terms)

= 7/9[(1 – 0.1) + (1 – 0.01) + (1-0.001) + … up to n terms]

= 7/9[(1 + 1 + 1… upto n terms) – (1/10 + 1/100 + 1/1000 + … upto n terms)]

= 7/9[n – 0.1 * (1 – (0.1)n)/(1 – 0.1)]

= 7/81[9n – 1 + 10-n]

Below is the Implementation to find the sum of given series:

C++

// C++ program for sum of the series 0.7, 

// 0.77, 0.777, ... upto n terms

#include <bits/stdc++.h>

using namespace std;

  

// function which return the

// the sum of series

float sumOfSeries(int n)

{

    return .086 * (9 * n - 1 +

           pow(10, (-1) * n));

}

  

// Driver code

int main()

{

    int n = 2;

    cout << sumOfSeries(n);

    return 0;

}

Java

Python3

C#

PHP

Output :1.46286

Answered by Refractioner
0

i will do it soon

Step-by-step explanation:

d

g

v

g

g

g

o

k

hd

g

t

t

y

g

u

g

u

y

mg

g

thanks

Similar questions