tesmt your knowledge and answer this question
Answers
The sum of the digits of a 2-digit number is 13.If the number obtained by interchanging the digits exceeds the ,original number by 27.
- Original number
- Reversed number
Let the digit at tens place be 'x'
And at Ones place be 'y'
✑ According to 1st Condition, We get,
➨ x + y = 13.
➨ x = 13 - y ----(1)
Now, Let the
Original Number = 10x + y
When digits interchanged, then
Reversed Number = 10y + x
✑ According to 2nd Condition, We get,
➨ (10y + x) + 27 = (10x + y)
➨ 10y - y + x - 10x = -27
➨ 9y - 9x = -27
➨ -9(-y + x) = -27
➨ x - y = -27/-9 = 3
➨ x - y = 3. ---(2)
Put the value of x from (1) , We get,
➨ (13 - y) - y = 3
➨ -2y = 3-13
➨ -2y = -10
➨ y = -10/-2 = 5
Put this value of y in (1)
➨ x = 13 - y
➨ 13 - 5 = 8
Hence,
Answer:
ʟᴇᴛ ᴛʜᴇ ᴛᴇɴs ᴅɪɢɪᴛ ᴏғ ᴀ ʀᴇǫᴜɪʀᴇᴅ ɴᴜᴍʙᴇʀ ʙᴇ x ᴀɴᴅᴛʜᴇ ᴜɴɪᴛ ᴅɪɢɪᴛs ʙᴇ Y ᴛʜᴇɴ
Step-by-step explanation:
x+ʏ=13.......1
ʀᴇǫᴜɪʀᴇᴅ ɴᴜᴍʙᴇʀ (10X+ʏ)
ɴᴜᴍʙᴇʀ ᴏʙᴛᴀɪɴᴇᴅ ᴏɴ ʀᴇᴠᴇʀsɪɴɢ ᴛʜᴇ ᴅɪɢɪᴛs(10ʏ+x)
ᴛʜᴇʀᴇғᴏʀᴇ
(10ʏ+x) -(10x+ʏ)=27
9Y-9x=27
(ᴅɪᴠɪᴅᴇ ʙᴏᴛʜ sɪᴅᴇs ʙʏ 3)
x-ʏ =9........2
ᴏɴ ᴀᴅᴅɪɴɢ ʙᴏᴛʜ sɪᴅᴇs ᴡᴇ ɢᴇᴛ
x+ʏ =13
x-ʏ=9
2ʏ=22
x=11
sᴜʙᴛʀᴀᴄᴛɪɴɢ 11ʙʏ ᴛʜᴇ sᴜᴍ ᴏғ ᴛʜᴇ ᴅɪɢɪᴛs ᴏғ ᴛᴡᴏ ᴅɪɢɪᴛ ɴᴜᴍʙᴇʀ i.e =13
- ᴛʜᴇʀᴇғᴏʀᴇ 13-11 =2
ɪ ʜᴏᴘᴇ ᴛʜɪs ᴍᴀʏ ʜᴇʟᴘ ʏᴏᴜ