Math, asked by yuvrajdhondge26, 1 month ago

Test the DE(sin x . sin y – xey) dy = (ey + cos x.cos y)dx for exactness and solve it if exact

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given Differential equation is

\rm :\longmapsto\:(sinxsiny - x {e}^{y})dy = ({e}^{y} + cosxcosy)dx

can be rewritten as

\rm :\longmapsto\:({e}^{y} + cosxcosy)dx - (sinxsiny - x{e}^{y})dy = 0

On Comparing with Mdx + Ndy = 0, we get

\rm :\longmapsto\:M = {e}^{y} + cosxcosy

and

\rm :\longmapsto\:N = -  sinxsiny + x{e}^{y}

Now, Consider,

\rm :\longmapsto\:M = {e}^{y} + cosxcosy

So,

\rm :\longmapsto\:\dfrac{\partial }{\partial y}M =\dfrac{\partial }{\partial y}( {e}^{y} + cosxcosy)

\rm :\longmapsto\:\dfrac{\partial M}{\partial y} =\dfrac{\partial }{\partial y}{e}^{y} +\dfrac{\partial }{\partial y} cosxcosy

 \red{\rm :\longmapsto\:\dfrac{\partial M}{\partial y} = {e}^{y} - sinycosx -  - (1)}

Now, Consider,

\rm :\longmapsto\:N = -  sinxsiny + x{e}^{y}

So,

\rm :\longmapsto\:\dfrac{\partial }{\partial x}N =\dfrac{\partial }{\partial x}( -  sinxsiny + x{e}^{y})

\rm :\longmapsto\:\dfrac{\partial N}{\partial x} = - \dfrac{\partial }{\partial x}sinxsiny +\dfrac{\partial }{\partial x} x{e}^{y}

 \red{\rm :\longmapsto\:\dfrac{\partial N}{\partial x} =  - cosxsiny  +  {e}^{y} -  -  - (2)}

From equation (1), and equation (2), we concluded that

\rm :\longmapsto\:\boxed{ \bf{ \:\dfrac{\partial N}{\partial x} = \dfrac{\partial M}{\partial y}}}

So, given differential equation is exact.

So, Solution is

\rm :\longmapsto\:\displaystyle\int_{y \:  constant}M \: dx \:  + \displaystyle\int_{term \: not \: containing \: x}N \: dy \:  =  \: c

On substituting the values, we get

\rm :\longmapsto\:\displaystyle\int_{y \:  constant}({e}^{y} + sinxsiny) \: dx \:  + \displaystyle\int_{term \: not \: containing \: x}0\: dy \:  =  \: c

\bf :\longmapsto\:x{e}^{y} - sinycosx  = c

Similar questions