TeveISEU. I UL
2. Sum of the digits of a 2-digit number is 10. The number obtained by interchanging the digits
exceeds the given number by 36. Find the given number.
Answers
Answer:
Let the -
ten's digit be M
one's digit be N
Number = 10M + N
Sum of two digit number is 10.
=> M + N = 10
=> M = 10 - N ...(1)
The number obtained by interchanging the digits exceeds the original number by 36.
Interchanged number = 10N + M
=> 10N + M = 10M + N +36
=> 10N - N + M - 10M = 36
=> 9N - 9M = 36
=> N - M = 4
=> N - (10 - N) = 4 [From (1)]
=> N - 10 + N = 4
=> 2N = 14
=> N = 7
Substitute value of N in (1)
=> M = 10 - 7
=> M = 3
•°• Original number = 10M + N
=> 10(3) + 7
=> 30 + 7
=> 37
Answer:
The number is 37
Step-by-step explanation:
Let,
The units digit = x
The tens digit = 10 - x
Orignal Number :
⇒ 10 (10 - x) + x
⇒ 100 - 10x + x
⇒ 100 - 9x
★ Digit of the number interchange:
⇒ 10x + (10 - x)
⇒ 10x - x + 10
⇒ 9x + 10
★According to the question:
The number with reversed digits exceeds
the original number by 36 :
So,
⇒ (100 - 9x) + 36 = (9x + 10)
⇒ 100 + 36 - 9x = 9x + 10
⇒ 136 - 9x = 9x + 10
⇒ 136 - 10 = 9x + 9x
⇒ 126 = 18x
⇒ 18x = 126
⇒ x = 126 / 18
⇒ x = 7
The unit digit = 7
The tens digit = 10 - x
⇒ 10 - 7
⇒ 3
The tens digit = 3
Therefore,
The number is 37