Math, asked by ashishgupta64, 6 months ago

 {1/√2+1} +  {1/√3+√2} +  {1/√4+√3} +....  {1/√9+√8}

Please solve this for me​

Answers

Answered by Anonymous
21

Answer:

 \frac{1}{ \sqrt{2} + 1 }  +   \frac{1}{ \sqrt{3} +  \sqrt{2}  }  +   \frac{1}{ \sqrt{4 }  +  \sqrt{3} }  + ...... +  \frac{1}{ \sqrt{9} +  \sqrt{8}  }  \\  \\

</p><p></p><p> =  \frac{ \sqrt{2} - 1 }{ \sqrt{2} }  +  \frac{ \sqrt{3} -  \sqrt{2}  }{1}  +  \frac{ \sqrt{4} -  \sqrt{3}  }{1}  + ... +  \frac{ \sqrt{9}  -  \sqrt{8} }{1}

 </p><p></p><p>=  \sqrt{2}  - 1 +  \sqrt{3}  -  \sqrt{2}  +  \sqrt{4}  -  \sqrt{3}  + ... \sqrt{9}  -  \sqrt{8}

 </p><p></p><p>=  - 1 +  \sqrt{9}  \\  \\  =  - 1 (+ 3) \\   \\ = 2

  </p><p></p><p>=  \frac{1}{ \sqrt{2}  +  \sqrt{1} } \times  \frac{ \sqrt{2} -  \sqrt{1}  }{ \sqrt{2}  -  \sqrt{1} }   +  \frac{1}{ \sqrt{3}  +  \sqrt{2} }   \times  \frac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3} -  \sqrt{2}  }  +  \frac{1}{ \sqrt{4} +  \sqrt{3}  }   \times  \frac{ \sqrt{4}  -  \sqrt{3} }{ \sqrt{4}  - 3}  +   \\ \frac{1}{ \sqrt{9}  +  \sqrt{8} }  \times  \frac{ \sqrt{9}  -  \sqrt{8} }{ \sqrt{9} -  \sqrt{8}  }

 </p><p></p><p></p><p></p><p>=  \frac{ \sqrt{2}  - 1}{( \sqrt{2}) {}^{2}  - 1} </p><p>  +  \frac{ \sqrt{3} </p><p> -  \sqrt{2} }{( \sqrt{3}) {}^{2} </p><p> - ( \sqrt{2}) {}^{2}   }  </p><p>+  \frac{ \sqrt{4}  - </p><p> \sqrt{3} }{( \sqrt{4} ) {}^{3}  </p><p>- ( \sqrt{3} ) {}^{2} }  + .... +  \frac{ \sqrt{9} </p><p> -  \sqrt{8} }{( \sqrt{9}) {}^{2}   - ( \sqrt{8} ) {}^{2} }

Hence, 2 is the answer.

Similar questions