Math, asked by mirajansari7866, 10 months ago


(1 - \cos^{2}a)cossec \: a = 1
plzzz give me a answer​

Answers

Answered by Anonymous
9

\Large{\underline{\underline{\red{\mathfrak{Correct \: Question :}}}}}

{\rm{Prove\: that \: (1 \:  -  \:   {\cos}^{2}A) \cosec A\:  =  \: 1}}

\Large{\underline{\underline{\red{\mathfrak{Solution :}}}}}

Take \mathbb{L.H.S,}

⇒(1 - Cos²A)CosecA

As we know ,

\Large{\underline{\boxed{\sf{1 \: - \: \cos ^2 A \: = \: \sin ^2 A}}}}

So,

⇒Sin²A(Cosec²A)

Also,

\Large{\underline{\boxed{\sf{\cosec ^2 A  \: = \: \frac{1}{\sin ^2 A}}}}}

So,

⇒Sin²A(1/Sin²A)

⇒Sin²A/Sin²A

Now,

\mathbb{L.H.S \: = \: R.H.S}

\LARGE {\boxed{\boxed{\sf{1 \: = \: 1}}}}

Hence Proved

____________________________

#answerwithquality

#BAL

Answered by rajsingh24
30

\huge{\orange{\underline{\red{\mathscr{ANSWER:-}}}}}

Given : (1- Cos²A) Cosec² A = 1

L.H.S : (1- Cos² A) Cosec² A

= Sin² A Cosec² A

[By using the identity , 1- Cos² A = sin²A]

= (Sin A Cosec A)²

= [Sin A x (1/Sin A)]²

[By using the identity , Cosec A = 1/Sin A]

= (1)²

= 1

(1- Cos²A) Cosec² A = 1

L.H.S = R.H.S

Hence Proved..

\huge{\orange{\underline{\red{\mathscr{THANKS.}}}}}

Similar questions