Math, asked by Gunjorychakraborty, 11 months ago


1 +  \cos(a )  \div  \sin(a)  =  \sin(a)  \div 1 -  \cos(a)
prove that​

Answers

Answered by Anonymous
11

\huge\tt{\red{\underline{Given:}}}

\dfrac{1+cosA}{sinA}=\dfrac{sinA}{1-cosA}

\huge\tt{\red{\underline{To\:\:Prove:}}}

★LHS=RHS.

\huge\tt{\red{\underline{Concept\:\:Used:}}}

★We would use some basic formulas related to trigonometry.

\huge\tt{\red{\underline{Answer:}}}

Taking RHS,

=\dfrac{sinA}{1-cosA}

=\dfrac{sinA \times sinA}{(1-cosA) (sinA)}

=\dfrac{sin^{2}A}{(sinA) (1-cosA) }

\large\purple{\boxed{sin^{2}\theta+cos^{2}\theta = 1}}

=\dfrac{(1-cos^{2}A)}{(sinA) (1-cosA) }

=\dfrac{(1+cosA) (1-cosA) }{(sinA) (1-cosA)}

\large\green{\boxed{a^{2}-b^{2}=(a+b) (a-b) }}

=\dfrac{(1+cosA) \cancel{(1-cosA)} }{(sinA) \cancel{(1-cosA)}}

=\dfrac{1+cosA}{sinA}

=RHS.

{\underline{\boxed{.°. LHS=RHS}}}

Hence proved.

Similar questions