Math, asked by sukhman9670, 10 months ago


1 + cos \:  + sin \:  \ \\ div 1 + cos \:  - sin = 1 + sin \div cos

Answers

Answered by codiepienagoya
0

Proving L.H.S=R.H.S

Step-by-step explanation:

Given that:

\frac{1+\cos +\sin}{1+\cos-\sin}=\frac{1+\sin}{cos}\\

Solving L.H.S part:  

\frac{1+\cos +\sin}{1+\cos-\sin}\  \times\ \frac{1+\cos +\sin}{1+\cos+\sin}\\

\frac{(1+\cos +\sin)^2}{(1+\cos-\sin)\times(1+\cos +\sin)}\\

\frac{(1+\cos^2 +\sin^2+2\cdot1\cdot\cos+2\cdot\cos\cdot\sin+2\cdot\sin\cdot1)}{(1+\cos)^2-(\sin)^2}\\

\frac{(1+1+2\cos+2\cos\sin+2\sin)}{(1+\cos^2+2\cdot1\cdot\cos)-(1-\cos^2)}\\

\frac{(2+2\cos+2\cos\sin+2\sin)}{(1+\cos^2+2\cos)-1+\cos^2}\\

\frac{2(1+\cos+\cos\sin+\sin)}{1+\cos^2+2\cos-1+\cos^2}\\

\frac{2(1+\cos+\sin(\cos+1))}{2\cos^2+2\cos}\\

\frac{2(1+\cos+\sin(1+\cos))}{2\cos(\cos+1)}\\

\frac{(1+\cos+\sin(1+\cos))}{\cos(\cos+1)}\\

\frac{(1+\cos)(1+\sin)}{\cos(1+\cos)}\\

\frac{(1+\sin)}{\cos}\\

L.H.S=R.H.S i.e, \frac{(1+\sin)}{\cos}\ = \frac{(1+\sin)}{\cos}\\

Learn more:

  • Proving:  https://brainly.in/question/14490168
Similar questions