Math, asked by raneprashant1912, 6 months ago


(1 +  cot ^{2} e). sin ^{2} e = 1 \\  \\ what \: isa \: answer \: this

Answers

Answered by BrainlyPopularman
13

TO PROVE :

 \\ \implies\bf(1 + cot ^{2} e). sin ^{2} e = 1 \\

SOLUTION :

Let's take L.H.S. –

 \\ \:  \:  =  \:  \: \bf(1 + cot ^{2} e). sin ^{2} e\\

• We know that –

 \\ \implies\large \red{ \boxed{ \bf  \cot( \theta) =  \dfrac{ \cos( \theta) }{ \sin( \theta) }}}\\

• So that –

 \\ \:  \:  =  \:  \:\bf \bigg[1 +  \bigg\{ \dfrac{ \cos(e) }{ \sin(e)} \bigg \}^{2}  \bigg]. sin ^{2} e\\

 \\ \:  \:  =  \:  \:\bf \bigg[1 +\dfrac{ \cos^{2}(e) }{ \sin^{2}(e)}\bigg]. sin ^{2} e\\

 \\ \:  \:  =  \:  \:\bf \bigg[\dfrac{\sin^{2}(e) + \cos^{2}(e) }{ \sin^{2}(e)}\bigg]. sin ^{2} e\\

 \\ \:  \:  =  \:  \:\bf \bigg[\dfrac{\sin^{2}(e) + \cos^{2}(e) }{  \cancel{\{\sin^{2}(e) \}}}\bigg].\cancel{\{\sin^{2}(e) \}}\\

 \\ \:  \:  =  \:  \:\bf\sin^{2}(e) + \cos^{2}(e)\\

• We also know that –

 \\ \implies \large \red{ \boxed{\bf\sin^{2}( \theta) + \cos^{2}( \theta) = 1}}\\

• So that –

 \\ \:  \:  =  \:  \:\bf1\\

 \\ \:  \:  =  \:  \:\bf R.H.S.\\

 \\ \:  \: \:  \: \large{ \underbrace{\bf Hence \:  \: Proved}}\\

Answered by shravyasraju
4

omg very sryy but u won't get free points

nothing is free work hard to get everything

byee gbsdtc❥☺️❥☺️❥☺️❥

may u get horror drms

Similar questions