Math, asked by pawanivijay05, 7 months ago


1 \div (\sqrt{6 } + \sqrt{5} ) - 2 \div ( \sqrt{5} - \sqrt{7} ) - 1 \div ( \sqrt{7} + \sqrt{6} ) simplyfy \: by \: rationalising \: the \: denominator

Answers

Answered by Anonymous
3

Answer:

answer =  > 1

Step-by-step explanation:

 \frac{1}{( \sqrt[]{6} +  \:  \sqrt[]{5})  }  -  \frac{2}{( \sqrt[]{5}  -  \:  \sqrt[]{7}) }  -  \frac{1}{ (\sqrt[]{7}  +  \:  \sqrt[]{6} )}

 =>  \frac{1}{ (\sqrt[]{6} +  \:  \sqrt[]{5} ) } =  \frac{1}{( \sqrt[]{6} + \:   \sqrt[]{5}  )}  \times  \frac{( \sqrt[]{6} -   \: \sqrt[]{5} ) }{ (\sqrt[]{6} -  \:  \sqrt[]{5}  )}

 =  \frac{ \sqrt[]{6} - \:   \sqrt[]{5}  }{( \sqrt[]{6}) {}^{2}  -  \: ( \sqrt[]{5) {}^{2} }  }  =  \frac{ \sqrt[]{6}  -  \:  \sqrt[]{5} }{6 - 5}  =  \sqrt[]{6}  -  \sqrt[]{5}

 =  >  \frac{2}{( \sqrt[]{5} - \:   \sqrt[]{7})  }  =  \frac{2}{( \sqrt[]{5}  -   \: \sqrt[]{7} )}  \times  \frac{( \sqrt[]{5}  +  \:  \sqrt[]{7} )}{ (\sqrt[]{5}  +  \:  \sqrt[]{7} )}

 =  \frac{2( \sqrt[]{5}  +  \:  \sqrt[]{7}) }{( \sqrt[]{5 }) {}^{2}  - ( \sqrt[]{7}  ) {}^{2} }  =  \frac{2( \sqrt[]{5} +  \:  \sqrt[]{7})  }{5 - 7} \\  =  -   \: \sqrt[]{5}  -  \sqrt[]{7}

 =  >  \frac{1}{( \sqrt[]{7} + \:   \sqrt[]{6})  }  =  \frac{1}{( \sqrt[]{7} +  \:  \sqrt[]{6} ) } \times  \frac{( \sqrt[]{7} -  \:  \sqrt[]{6})  }{( \sqrt[]{7} -  \:  \sqrt[]{6} ) }

 =  \frac{ \sqrt[]{7}  -  \:  \sqrt[]{6} }{ (\sqrt[]{7})  {}^{2} - ( \sqrt[]{6}) {}^{2}   }  =  \frac{ \sqrt[]{7}  - \:   \sqrt[]{6} }{7 - 6}  =  \sqrt[]{7} -  \sqrt[]{6}

therefore \: given \: expression

 =  \sqrt[]{6}  -  \sqrt[]{5}  - ( -  \:  \sqrt[]{5}  -  \:  \sqrt[]{7} ) -  \sqrt[]{7}  -  \sqrt[]{6}

 =  \sqrt[]{6}  -  \:  \sqrt[]{5}  +  \:  \sqrt[]{5} +  \:  \sqrt[]{7}  -  \sqrt[]{7}   -  \sqrt[]{6}

which \: is \:  => 1

Similar questions