Math, asked by rahilscapture07, 1 year ago

1 + i \sqrt{3} modulus and amplitude

Answers

Answered by Anonymous
45

Question →

Modulus and amplitude of 1 + i√3 .

Solution →

Modulus

Let z = 1 + i√3

So, as we know that

 |z|  =  \sqrt{re( {z)}^{2}  + im( {z)}^{2} }  \\

Here Re(z) = 1 and Im(z) = √3

 |z|  =  \sqrt{( {1}^{2} ) + ( { \sqrt{3)} }^{2}  }  \\

 |z|  =  \sqrt{4}  = 2 \\

Hence Modulus of 1+i√3 is 2 .

Argument (amplitude)

Let alpha be acute angle given by

 \tan(\alpha )  =   | \frac{im(z)}{re(z)} |  \\

 \tan( \alpha )  =  | \frac{ \sqrt{3} }{1} |  \\

 \tan( \alpha )  =  \sqrt{3}  \\

And we know that √3 = tan 60° ,so

 \tan( \alpha )  =  \tan(60)  =  \frac{\pi}{3}  \\

And here Re(z) >0 and Im(z) >0 . So it means that z lies in 1st quadrant .

ARG.Z = π/3 .

<font color=red><marquee direction="Right">Hope it help you

Answered by Anonymous
7

A number of the form a + ib , where a and b are real numbers , is defined to be a complex number

For the complex number z = a + ib , a is called real part , denoted by  \sf Re_{z} and b is called the imaginary part denoted by  \sf Im_{z} of the complex number z

____________________________

Now , let's go back to your question

 \sf \pink{ \underline{For \:  modulus : \: }}

Given ,

 \starComplex number = 1 + i√3

 \star a = 1

 \star b = √3

 \sf \fbox{ \fbox{ \: Modulus \:  ( |z|  ) =  \sqrt{ {(a)}^{2}  +  {(b)}^{2} } \:  \:  }}

 \sf =  \sqrt{ {(1)}^{2}  +  {( \sqrt{3} )}^{2} }   \\  \\ \sf  =  \sqrt{1 + 3}  \\  \\ \sf  =  \sqrt{4}  \\  \\ \sf  = 2

 \sf \pink{ \underline{For  \: amplitude : \: }}

Given ,

 \star \:  \:    \sf r \: (Cos \:  \theta) = 1 \:  -  -  -  -  -  \: (i) \\  \star \:  \:  \sf r \: (Sin \: \theta) =  \sqrt{3} \:  -  -  -  -  -  \: (ii)

Adding equation (i) and (ii) , we get

\sf \implies r \: (Cos \:  \theta)  + r \: (Sin \: \theta) = 1 +  \sqrt{3}  \\  \\\sf \implies  r \: (Cos \:  \theta + Sin \: \theta) = 1 +  \sqrt{3}

On squaring both sides , we obtain

\sf \implies {(r)}^{2} ( {Cos}^{2}  \:  \theta +  {Sin }^{2}  \: \theta) =  {(1)}^{2} +   {(\sqrt{3} )}^{2}  \\  \\\sf \implies  {(r)}^{2}  \times 1 = 1 + 3 \\  \\\sf \implies  {(r)}^{2}  = 4 \\  \\\sf \implies r =  \sqrt{4}  \\  \\\sf \implies  r = 2

Put the value of r = 2 in equation (ii)

 \sf \implies 2(Sin \: \theta) =  \sqrt{3}  \\  \\\sf \implies Sin \: \theta =  \frac{ \sqrt{3} }{2}  \\  \\\sf \implies Sin \: \theta = Sin \:  (\frac{\pi}{3} ) \\  \\\sf \implies \theta =  \frac{\pi}{3}

Therefore , the modulus and amplitude of given complex number are 2 and π/3

Similar questions