Math, asked by deadlyracerdeadlyrac, 4 months ago


1) \: in \: a \: triangle \: abc \: if \: a  = 2 \sqrt{2}  \: b  = 2 \sqrt{3 \: }c = 75degree .   \find\: the \:order \: other \: sides \: and \: the \: angle



.​

Answers

Answered by mathdude500
1

Question :-

In ∆ ABC,

\bf \:if \: a = 2 \sqrt{2} \:and \:  b = 2 \sqrt{3 \: }

 ∠C = 75°. Find the other sudes and angle of a triangle.

\huge \red{AηsωeR } ✍

\large \red{\bf \:   Given :- } ✍

A ∆ ABC, in which ∠C = 75° and two sides are

\bf \:a = 2 \sqrt{2} \:and \:  b = 2 \sqrt{3 \: }

\large \red{\bf \:   To  \: Find :- } ✍

  • Side c of triangle ABC
  • ∠A and ∠B of triangle ABC.

Formula Used :-

Cosine Law :-

\bf \:cosC = \dfrac{ {a}^{2}  +  {b}^{2} -  {c}^{2}  }{2ab}

Sine Law :

\bf \:\dfrac{a}{sinA} =  \dfrac{b}{sinB}  = \dfrac{c}{sinC}  = k

\large \red{\bf \:   Solution :- } ✍

\bf \:  ⟼ cos75° = cos(45° + 30°)

\bf \:  ⟼ cos75° = cos45°cos30° - sin45°sin30°

\bf \:  ⟼ cos75° = \dfrac{ \sqrt{3} }{2}  \times \dfrac{1}{ \sqrt{2} }  - \dfrac{1}{ \sqrt{2} }  \times \dfrac{1}{2}

\bf \:  ⟼ cos75° = \dfrac{ \sqrt{3}  - 1}{2 \sqrt{2} }  \: ⟼  \: (1)

\bf \:  ⟼ sin75° = sin(45°  + 30°)

\bf \:  ⟼ sin75° = sin45°cos30° + cos45°sin30°

\bf \:  ⟼ sin75° = \dfrac{ 1}{2}  \times \dfrac{1}{ \sqrt{2} }  + \dfrac{ \sqrt{3} }{2}  \times \dfrac{1}{ \sqrt{2} }

\bf \:  ⟼ sin75° = \dfrac{ \sqrt{3}  + 1}{2 \sqrt{2} }  \: ⟼  \: (2)

\begin{gathered}\bf\red{According\:to\:the\:question,} \end{gathered}

\bf \:  ⟼ a = 2 \sqrt{2} \:and \:  b = 2 \sqrt{3 \: } \: and \: ∠C = 75°

Using Cosine Law, we get

\bf \:cosC = \dfrac{ {a}^{2}  +  {b}^{2} -  {c}^{2}  }{2ab}

On substituting the values of a, b and ∠C, we get

\bf ⟼ \:cos75°= \dfrac{ {(2 \sqrt{2}) }^{2}  +  {(2 \sqrt{3} )}^{2} -  {c}^{2}  }{2 \times 2 \sqrt{2} \times  2 \sqrt{3} }

\bf ⟼ \:\dfrac{ \sqrt{3}  - 1}{2 \sqrt{2} }  = \dfrac{ 8 + 12-  {c}^{2}  }{8 \times  \sqrt{2}  \times  \sqrt{3} }

\bf \:  ⟼ ( \sqrt{3}  - 1)  \times 4 \sqrt{3}  = 20 -  {c}^{2}

\bf \:  ⟼ 12 - 4 \sqrt{3}  = 20 -  {c}^{2}

\bf \:  ⟼  {c}^{2}  = 8 + 4 \sqrt{3}

\bf \:  ⟼  {c}^{2}  = 2(4 + 2 \sqrt{3} )

\bf \:  ⟼  {c}^{2}  = 2(3 + 1 + 2 \sqrt{3} )

\bf \:  ⟼  {c}^{2}  = 2 {( \sqrt{3} + 1) }^{2}

\bf \:  ⟼ c =  \sqrt{2} ( \sqrt{3}  + 1) \: ⟼  \: (3)

\begin{gathered}\bf\pink{Now \: using \: sine \: law}\end{gathered}

\bf \:  ⟼ \bf \:\dfrac{a}{sinA} =  \dfrac{b}{sinB}  = \dfrac{c}{sinC}

On substituting the values of a, b, c and ∠C, we get

\bf⟼  \:\dfrac{2 \sqrt{2} }{sinA} =  \dfrac{2 \sqrt{3} }{sinB}  = \dfrac{ \sqrt{2} ( \sqrt{3} + 1) }{sin75°}

\bf⟼  \:\dfrac{2 \sqrt{2} }{sinA} =  \dfrac{2 \sqrt{3} }{sinB}  = \dfrac{ \sqrt{2} ( \sqrt{3} + 1) }{\dfrac{ \sqrt{3}  + 1}{2 \sqrt{2} } }

\bf⟼  \:\dfrac{2 \sqrt{2} }{sinA} =  \dfrac{2 \sqrt{3} }{sinB}  = 4

\bf \:  ⟼ sinA = \dfrac{2 \sqrt{2} }{4}  \: and \: sinB = \dfrac{2 \sqrt{3} }{4}

\bf \:  ⟼ sinA = \dfrac{1}{ \sqrt{2} } \: and \: sinB =  \dfrac{ \sqrt{3} }{2}

\large \red{\bf \:  ⟼ A = 45° \: and \: B = 60°} ✍

\begin{gathered}\bf\blue{Hence} \end{gathered}

\ \red{\bf \: A = 45° \: and \: B = 60° \: and \: c \:  =  \sqrt{2}( \sqrt{3 + 1)}  }


deadlyracerdeadlyrac: tq
mathdude500: Welcome
Similar questions