Math, asked by Anonymous, 6 hours ago


1. \: \sf \: Find  \: the  \: value \:  of \:  \\  \sf \:  tan^{ - 1} (tan 5\pi/6) + cos ^{ - 1} -1(cos 13\pi/6)
2. \:  \sf \: Evaluate :   \\  \sf \: cos [cos {}^{ - 1} (-√3/2) + \pi/6]
3. \sf \: prove \: that :  \\  \sf \: cot (π/4 - 2  \: cot  {}^{ - 1}  3) =   7


No spam !!! ​

Answers

Answered by mathdude500
6

\green{\large\underline{\sf{Solution-1}}}

\rm :\longmapsto\: {tan}^{ - 1}\bigg[tan\dfrac{5\pi}{6} \bigg]  +  {cos}^{ - 1}\bigg[cos\dfrac{13\pi}{6} \bigg]

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{{tan}^{ - 1}(tanx) = x \:  \: if \: x \:  \in \: \bigg( - \dfrac{\pi}{2}, \dfrac{\pi}{2}  \bigg) }}}

and

 \purple{\rm :\longmapsto\:\boxed{\tt{{cos}^{ - 1}(cosx) = x \:  \: if \: x \:  \in \: [0,\pi]}}}

So,

\rm :\longmapsto\: {tan}^{ - 1}\bigg[tan\dfrac{5\pi}{6} \bigg]  +  {cos}^{ - 1}\bigg[cos\dfrac{13\pi}{6} \bigg]

can be rewritten as

\rm \:  =  \:  {tan}^{ - 1}\bigg[tan\bigg(\pi - \dfrac{\pi}{6} \bigg)\bigg]  +  {cos}^{ - 1}\bigg[cos\bigg(2\pi + \dfrac{\pi}{6}\bigg) \bigg]

\rm \:  =  \:  {tan}^{ - 1}\bigg[ - tan\dfrac{\pi}{6} \bigg]  +  {cos}^{ - 1}\bigg[cos\dfrac{\pi}{6} \bigg]

\rm \:  =  \:  -  {tan}^{ - 1}\bigg[ tan\dfrac{\pi}{6} \bigg]  +  \dfrac{\pi}{6}

\rm \:  =  \:  -  \dfrac{\pi}{6} +  \dfrac{\pi}{6}

\rm \:  =  \: 0

Hence,

\purple{\rm\implies \:\boxed{\tt{  {tan}^{ - 1}\bigg[tan\dfrac{5\pi}{6} \bigg]  +  {cos}^{ - 1}\bigg[cos\dfrac{13\pi}{6} \bigg]  = 0}}}

\green{\large\underline{\sf{Solution-2}}}

\rm :\longmapsto\:cos\bigg[{cos}^{ - 1}\bigg(\dfrac{ -  \sqrt{3} }{2}\bigg) + \dfrac{\pi}{6} \bigg]

We know,

\boxed{\tt{ {cos}^{ - 1}( - x) = \pi - {cos}^{ - 1}x \: }}

So, using this identity, we get

\rm \:  =  \: cos\bigg[\pi - {cos}^{-  1}\bigg(\dfrac{\sqrt{3} }{2}\bigg) + \dfrac{\pi}{6} \bigg]

\rm \:  =  \: cos\bigg[\pi - {cos}^{-  1}\bigg(cos\dfrac{\pi }{6}\bigg) + \dfrac{\pi}{6} \bigg]

\rm \:  =  \: cos\bigg[\pi - \dfrac{\pi }{6} + \dfrac{\pi}{6} \bigg]

\rm \:  =  \: cos\pi

\rm \:  =  \:  -  \: 1

Hence,

\rm :\longmapsto\:\boxed{\tt{ cos\bigg[{cos}^{ - 1}\bigg(\dfrac{ -  \sqrt{3} }{2}\bigg) + \dfrac{\pi}{6} \bigg] =  - 1}}

\green{\large\underline{\sf{Solution-3}}}

\rm :\longmapsto\:cot\bigg[\dfrac{\pi}{4}  - 2 {cot}^{ - 1}3 \bigg]

\rm \:  =  \: \:cot\bigg[\dfrac{\pi}{4}  - 2 {tan}^{ - 1}\dfrac{1}{3}  \bigg]

\rm \:  =  \: \:cot\bigg[\dfrac{\pi}{4}  - {tan}^{ - 1}\dfrac{2 \times  \frac{1}{3} }{1 -  { \frac{1}{9} }} \bigg]

\rm \:  =  \: \:cot\bigg[\dfrac{\pi}{4}  - {tan}^{ - 1}\dfrac{2 \times  \frac{1}{3} }{ { \frac{9 - 1}{9} }} \bigg]

\rm \:  =  \: \:cot\bigg[\dfrac{\pi}{4}  - {tan}^{ - 1}\dfrac{2 \times  \frac{1}{3} }{ { \frac{8}{9} }} \bigg]

\rm \:  =  \: \:cot\bigg[\dfrac{\pi}{4}  - {tan}^{ - 1}\dfrac{2 \times 9}{3 \times 8} \bigg]

\rm \:  =  \: \:cot\bigg[\dfrac{\pi}{4}  - {tan}^{ - 1}\dfrac{3}{4} \bigg]

\rm \:  =  \: \:cot\bigg[{tan}^{ - 1}1  - {tan}^{ - 1}\dfrac{3}{4} \bigg]

\rm \:  =  \: \:cot\bigg[{tan}^{ - 1}\bigg(\dfrac{1 -  \frac{3}{4} }{1 + \frac{3}{4} } \bigg)  \bigg]

\rm \:  =  \: \:cot\bigg[{tan}^{ - 1}\bigg(\dfrac{\frac{4 - 3}{4} }{ \frac{4 + 3}{4} } \bigg)  \bigg]

\rm \:  =  \: \:cot\bigg[{tan}^{ - 1}\bigg(\dfrac{\frac{1}{4} }{\frac{7}{4} } \bigg)  \bigg]

\rm \:  =  \: cot\bigg[{tan}^{ - 1}\dfrac{1}{7} \bigg]

\rm \:  =  \: cot( {cot}^{ - 1}7)

\rm \:  =  \: 7

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Identities Used

\boxed{\tt{ 2{tan}^{ - 1}x = {tan}^{ - 1} \frac{2x}{1 -  {x}^{2} }}}

\boxed{\tt{ {tan}^{ - 1}x  -  {tan}^{ - 1}y = {tan}^{ - 1}\bigg[\dfrac{x - y}{1 + xy} \bigg]}}

\boxed{\tt{ {tan}^{ - 1}1 =  \frac{\pi}{4}}}

Answered by XxitzZBrainlyStarxX
12

1.Question:-

\sf \: Find \: the \: value \: of \: \\ \sf \: tan^{ - 1} (tan  \frac{5\pi}{6} ) + cos ^{ - 1} (cos  \frac{13\pi}{6} )

Given:-

 \sf \: tan^{ - 1} (tan  \frac{5\pi}{6} ) + cos ^{ - 1} (cos  \frac{13\pi}{6} )

To Find:-

  • The value of the Given condition.

Solution:-

\sf \: tan^{ - 1} (tan  \frac{5\pi}{6} ) + cos ^{ - 1} (cos  \frac{13\pi}{6} )

\sf = tan {}^{ - 1}  \bigg \{tan (\pi -  \frac{5\pi}{6} ) \bigg \} + cos {}^{ - 1}  \bigg \{cos(2\pi +  \frac{\pi}{6} ) \bigg \}

\sf = tan {}^{ - 1}  \bigg \{ - tan( \frac{\pi}{6} ) \bigg \} + cos {}^{ - 1}  \bigg \{cos( \frac{\pi}{6} ) \bigg \}

\sf =  - tan {}^{ - 1}  \bigg \{tan( \frac{\pi}{6} ) \bigg \} + cos {}^{ - 1}  \bigg \{cos( \frac{\pi}{6} ) \bigg \}

\sf  = {{ \cancel{  -  \frac{\pi}{6} }}} {{ \cancel  { +  \frac{\pi}{6} }}} = 0

Answer:-

 \sf \: \red{  tan^{ - 1} (tan  \frac{5\pi}{6} ) + cos ^{ - 1} -1(cos  \frac{13\pi}{6} ) = 0.}

_______________________________________

2.Question:-

 \sf \: Evaluate : \\ \sf \: cos [cos {}^{ - 1} ( \frac{ -  \sqrt{3} }{2} ) +  \frac{\pi}{6} ]

Given:-

\sf \: cos [cos {}^{ - 1} ( \frac{ -  \sqrt{3} }{2} ) +  \frac{\pi}{6} ]

To Find:-

  • Needed to Evaluate the Given condition.

Solution:-

We have,

 \sf \: cos [cos {}^{ - 1} ( \frac{ -  \sqrt{3} }{2} ) +  \frac{\pi}{6} ]

  \sf = cos[cos {}^{ - 1} ( - cos \frac{\pi}{6} ) +  \frac{\pi}{6} )]

 \sf = cos[cos {}^{ - 1} (cos \frac{5\pi}{6} ) +  \frac{\pi}{6} ] \: [ - cos \frac{\pi}{6}  = cos(\pi -  \frac{\pi}{6} )]

 \sf = cos( \frac{5\pi}{6}  +  \frac{\pi}{6} ) \\  \\  \\  \:  \:  \:  \sf[  \because \: cos  {}^{ - 1}(cos \: x) = x,x \in[0,\pi]

\sf = cos( \frac{6\pi}{6} ) = cos(\pi) =  - 1

Answer:-

 \sf  \blue{\: cos [cos {}^{ - 1} ( \frac{ -  \sqrt{3} }{2} ) +  \frac{\pi}{6} ] =  - 1.}

________________________________________

3.Question:-

\sf \: prove \: that : \\ \sf \: cot ( \frac{\pi}{4} - 2 \: cot {}^{ - 1}  3) =  7

Given:-

\sf \: cot ( \frac{\pi}{4} - 2 \: cot {}^{ - 1}  3) =  7

To Prove:-

  • To prove the Given condition.

Solution:-

 \sf cot \bigg \{ \frac{\pi}{4}  - 2 \: cot {}^{ - 1}  \:3 \bigg \} = cot \bigg \{ \frac{\pi}{4}  - 2tan {}^{ - 1}  \:  \frac{1}{3}  \bigg \}

 \sf \: = cot \bigg \{ \frac{\pi}{4}  - tan {}^{ - 1}  \bigg(  \frac{ \frac{2}{3} }{1 -  \frac{1}{9} }  \bigg) \bigg \}

 \sf \: cot \bigg \{ \frac{\pi}{4}  - tan {}^{ - 1}  \: ( \frac{3}{4} ) \bigg \}  \sf =  \frac{1}{tan \bigg \{ \frac{\pi}{4} - tan {}^{ - 1} ( \frac{3}{4}  ) \bigg \}}

 \sf =  \frac{1 +  \frac{3}{4} }{1 -  \frac{3}{4} }  = 7

Answer:-

\sf \: \green{ cot ( \frac{\pi}{4} - 2 \: cot {}^{ - 1}  3) =  7.}

Hope you are have satisfied.

Similar questions