Attachments:
Answers
Answered by
86
Answer:-
Using (a + b)² + (a - b)² = 2(a² + b²) and (a + b)(a - b) = a² - b² we get,
_________________________________
Rationalise the denominator.
Using (a + b)² = a² + b² + 2ab we get,
_________________________________
Answered by
28
Given :-
1. 4 + √5/4 - √5 + 4 - √5/4 + √5
2. √3 + √2/√3 - √2
3. 3/5 - √3 + 2/5 + √3
To Find :-
Value
Solution :-
1]
By taking LCM
(4 + √5)² + (4 - √5)²/(4 - √5)(4 + √5)
2(4² + √5)²/(4)² - (√5)²
2(16 + 5)/16 - 5
2(21)/11
42/11
2]
√3 + √2/√3 - √2 × √3 + √2/√3 + √2
√3 + √2 × √3 + √2/√3 - √2 × √3 + √2
(√3 + √2)²/(√3)² - (√2)²
- (a + b)² = a² + b² + 2ab
(√3)² + (√2)² + 2(√3)(√2)/3 - 2
3 + 2 + 2√6/1
5 + 2√6
3]
3(5 + √3) + 2(5 - √3)/(5 - √3)(5 + √3)
15 + 3√3 + 10 - 2√2/(5)² - (√3)²
25 + √3/25 - 3
25 + √3/22
Similar questions