Math, asked by Anonymous, 5 hours ago


1. \: \sf\frac{4 +  \sqrt{5} }{4 -  \sqrt{5}}   +  \frac{4 -  \sqrt{5} }{4 +  \sqrt{5} }  \\
 \sf \: 2. \frac{ \sqrt{3} +  \sqrt{2} }{ \sqrt{3} -  \sqrt{2}  } \\
 \sf \: 3. \frac{3}{5 -  \sqrt{3} }  +  \frac{2}{5 +  \sqrt{3} } \\
 \bold{ \bullet \: give \: correct \: answer \: only}
 \bold{ \bullet \: do \: not \: spam }
 \bold{ \bullet \: show \: full \: solution}
 \bold{ \bullet \: these \: questions \: are  \: also\: available \: in \: attachment }






Attachments:

Answers

Answered by VishnuPriya2801
86

Answer:-

 \sf \: 1. \:  \:  \dfrac{4 +  \sqrt{5} }{4 -  \sqrt{5} }  +  \dfrac{4 -  \sqrt{5} }{4 +  \sqrt{5} }  \\  \\  \\  \implies \sf \:  \frac{(4 +  \sqrt{5}) ^{2}  + (4 -  \sqrt{5} ) ^{2}  }{(4  -   \sqrt{5})(4  +  \sqrt{5} ) }

Using (a + b)² + (a - b)² = 2(a² + ) and (a + b)(a - b) = - we get,

 \implies \sf \:  \frac{2 \big( {4}^{2}  +  (\sqrt{5}) ^{2}   \big)}{ {4}^{2}  -  {( \sqrt{5} )}^{2} }  \\  \\  \\ \implies \sf \: \frac{2(16 + 5)}{16 - 5}  \\  \\  \\ \implies \sf \: \frac{2 \times 21}{11}  \\  \\  \\ \implies  \red{\sf \: \frac{42}{11} }

_________________________________

 \sf \: 2. \:  \:  \dfrac{ \sqrt{3} + \sqrt{2} }{ \sqrt{3}  - \sqrt{2}}

Rationalise the denominator.

 \: \implies \sf \: \dfrac{( \sqrt{3}  + \sqrt{2})( \sqrt{3} + \sqrt{2}) }{( \sqrt{3} - \sqrt{2})( \sqrt{3} + \sqrt{2})  }  \\  \\  \\ \implies \sf \:  \frac{{( \sqrt{3} + \sqrt{2}) }^{2} }{ {( \sqrt{3} )}^{2} -  ({\sqrt{2}})^{2}  }

Using (a + b)² = + + 2ab we get,

  \implies \sf \:  \frac{ {( \sqrt{3}) }^{2} +  ({\sqrt{2}})^{2} + 2 \times  \sqrt{3}   \times \sqrt{2} }{3 - 2}  \\  \\  \\ \implies \sf \:  \frac{3 + 2 + 2 \sqrt{2 \times 3} }{1}  \:\:\:\: (\because \sqrt{a} \times \sqrt{b} = \sqrt{ab} )\\  \\  \\ \implies  \red{\sf \:  5+ 2 \sqrt{6} ) }

_________________________________

 \: \implies \sf \:  \frac{3}{5 -  \sqrt{3} }  +  \frac{2}{5 +  \sqrt{3} }  \\  \\  \\ \implies \sf \: \frac{3(5 +  \sqrt{3} ) + 2(5  -  \sqrt{3} )}{(5 -  \sqrt{3} )(5 +  \sqrt{3}) }  \\  \\  \\ \implies \sf \: \frac{15 + 3 \sqrt{3} + 10 - 2 \sqrt{3}  }{ {5}^{2}  -  {( \sqrt{3} )}^{2} }  \\  \\  \\ \implies \sf \: \frac{25 +  \sqrt{3} }{25 - 3}  \\  \\  \\ \implies  \red{\sf \: \frac{25 +  \sqrt{3} }{22} }

Answered by Itzheartcracer
28

Given :-

1. 4 + √5/4 - √5 + 4 - √5/4 + √5

2. √3 + √2/√3 - √2

3. 3/5 - √3 + 2/5 + √3

To Find :-

Value

Solution :-

1]

By taking LCM

(4 + √5)² + (4 - √5)²/(4 - √5)(4 + √5)

2(4² + √5)²/(4)² - (√5)²

2(16 + 5)/16 - 5

2(21)/11

42/11

2]

√3 + √2/√3 - √2 × √3 + √2/√3 + √2

√3 + √2 × √3 + √2/√3 - √2 × √3 + √2

(√3 + √2)²/(√3)² - (√2)²

  • (a + b)² = a² + b² + 2ab

(√3)² + (√2)² + 2(√3)(√2)/3 - 2

3 + 2 + 2√6/1

5 + 2√6

3]

3(5 + √3) + 2(5 - √3)/(5 - √3)(5 + √3)

15 + 3√3 + 10 - 2√2/(5)² - (√3)²

25 + √3/25 - 3

25 + √3/22

Similar questions