Answers
Answered by
11
Given to find the value of :-
(1 - sin²θ)(1+ tan²θ)
SOLUTION:-
We can find this Solution very easily by Trigonometric identities
As all we know that,
sin²θ + cos²θ = 1
1 - sin²θ = cos²θ _______ 1
sec²θ - tan²θ = 1
sec²θ = 1+tan²θ_________ 2
(1 - sin²θ)(1+ tan²θ)
= cos²θ × sec²θ
From trigonometric relations
secθ = 1/cosθ
= cos²θ × 1/cos²θ
= 1
So, (1 - sin²θ)(1+ tan²θ) = 1
Know more :-
Trigonometric Identities
sin²θ + cos²θ = 1
sec²θ - tan²θ = 1
csc²θ - cot²θ = 1
Trigonometric relations
sinθ = 1/cscθ
cosθ = 1 /secθ
tanθ = 1/cotθ
tanθ = sinθ/cosθ
cotθ = cosθ/sinθ
Trigonometric ratios
sinθ = opp/hyp
cosθ = adj/hyp
tanθ = opp/adj
cotθ = adj/opp
cscθ = hyp/opp
secθ = hyp/adj
Similar questions
Hindi,
1 month ago
Computer Science,
1 month ago
Geography,
1 month ago
Math,
2 months ago
India Languages,
9 months ago
English,
9 months ago