Math, asked by atharvchaure7, 1 month ago



1 \sqrt{2}  + 1 \sqrt{2}  \div  \ \\ sqrt{2}  +   sqrt{2}

Answers

Answered by Intelligentcat
5

Given :

\implies \sf 1 \sqrt{2} + 1 \sqrt{2} \div \ \\ \sqrt{2} + \sqrt{2}

Solution :+

\dashrightarrow\:\:\sf 1 \sqrt{2} + 1 \sqrt{2} \div \ \\ \sqrt{2} + \sqrt{2} \\ \\

\dashrightarrow\:\:\sf  2 \sqrt{2}  \div \ \sqrt{2} + \sqrt{2} \\ \\

\dashrightarrow\:\:\sf  \dfrac{2 \sqrt{2}}{ 2 \sqrt{2}} \\ \\

 \sf \longrightarrow \: {\dfrac{ 2 \cancel{ \sqrt{2}}^{ \:  \: 1} }{ 2 \cancel{ \sqrt{2} }^{ \:  \: } } \:} \\  \\

\dashrightarrow\:\:\sf  1 \\

Therefore,

\dashrightarrow\:\: \underline{ \boxed{\sf Required \: answer = 1 }} \\ \\

Answered by BrainlyRish
4

Appropriate Question :

  • Solve : \longmapsto \:\bf{\dfrac{1 \sqrt{2} + 1 \sqrt{2} }{ \sqrt{2} + \sqrt{2}}}\\\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Given : \longmapsto \:\bf{Expression \:\:= \dfrac{1 \sqrt{2} + 1 \sqrt{2} }{ \sqrt{2} + \sqrt{2}} }\\\\

Need To Solve : \longmapsto \:\sf{\dfrac{1 \sqrt{2} + 1 \sqrt{2} }{ \sqrt{2} + \sqrt{2}}} \\\\

⠀⠀⠀⠀⠀⠀\underline {\frak{\star\:Now \: By \: Solving \: the \: Given \: Expression \::}}\\

\qquad \quad \dag\:\:\longmapsto \:\sf{\dfrac{1 \sqrt{2} + 1 \sqrt{2} }{ \sqrt{2} + \sqrt{2}}}\\\\

\longmapsto \:\sf{ \dfrac{\purple {1 \sqrt{2} + 1 \sqrt{2}} }{ \sqrt{2} + \sqrt{2}}}\\\\

\longmapsto \:\sf{\dfrac{\purple {2 \sqrt{2} } }{ \sqrt{2} + \sqrt{2}} }\\\\

\longmapsto \:\sf{\dfrac{2 \sqrt{2}  }{ \sqrt{2} + \sqrt{2}}}\\\\

\longmapsto \:\sf{\dfrac{2 \sqrt{2}  }{ \purple {\sqrt{2} + \sqrt{2}}}}\\\\

\longmapsto \:\sf{\dfrac{2 \sqrt{2}  }{ \purple {2\sqrt{2} }}} \\\\

\longmapsto \:\sf{\dfrac{2 \sqrt{2}  }{ 2\sqrt{2}} } \\\\

\longmapsto \:\sf{\cancel {\dfrac{2 \sqrt{2}  }{ 2\sqrt{2} }}} \\\\

\longmapsto \:\bf{ 1 \qquad \quad \longrightarrow\:\; AnswEr\:}\\\\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm { The\: Value \:of\:Given \:Expression \:is\:\bf{1\: }}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions