Math, asked by Diamond0000001, 9 days ago


1. \:  \sqrt[3]{32 \times ( - 250)}  \\
2. \:  \sqrt[3]{ \frac{648}{3993} }  \\
3. \:  \sqrt[3]{ \frac{256}{54 \times686} }  \\
Need Explanation.

Answers

Answered by Atlas99
8

1. \: \sqrt[3]{32 \times ( - 250)} \\

  \tt{ =  \sqrt[3]{ -(32 \times 250)} }

 \tt{ =  -  \sqrt[3]{32 \times 250} }

\tt{ = - \sqrt[3]{32\times(2 \times 125)} }

\tt{ = -  \sqrt[3]{(32 \times 2) \times 125}  }

\tt{ =  -  \sqrt[3]{64\times125}}

\tt{ = - \sqrt[3]{4^{3} \times  {5}^{3} } }

\tt{ = -  \sqrt[3]{ {4}^{3}} \times  \sqrt[3]{ {5}^{3}} }

\tt{ =  - 4 \times 5}

\tt{ =  - 20}.

 \rule{200pt}{4pt}

2. \: \sqrt[3]{ \frac{648}{3993} } \\

 \tt{= \sqrt[3]{ \frac{3 \times 216}{3 \times 1331} }} \\

\tt{ =  \sqrt[3]{ \frac{216}{1331} } } \\

\tt{ =  \frac{ \sqrt[3]{216} }{ \sqrt[3]{1331} } } \\

\tt{ =  \frac{ \sqrt[3]{6^{3} } }{ \sqrt[3]{ {11}^{3} } } } \\

\tt{ =  \frac{6}{11}.} \\

 \rule{200pt}{4pt}

3. \: \sqrt[3]{ \frac{256}{54 \times686} } \\

 \tt{ = \sqrt[3]{ \frac{4 \times 64}{2 \times 27 \times 2 \times 343} } } \\

\tt{ = \sqrt[3]{ \frac{64}{27 \times 343} } } \\

\tt{ = \frac{ \sqrt[3]{64} }{ \sqrt[3]{27} \times  \sqrt[3]{343} } } \\

\tt{ = \frac{ \sqrt[3]{ {4}^{3} } }{ \sqrt[3]{ {3}^{3} \times  \sqrt[3]{ {7}^{3} } } } } \\

\tt{ = \frac{4}{3 \times 7}} \\

\tt{ = \frac{4}{21}.} \\

  \pink{\rule{200pt}{5pt}}

Similar questions